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1. Introduction

Collective action problems can make groups weak and ineffective. This is particularly

problematic when an external principal can exploit the incentives of individual members

to free ride on each other, leading the group to inefficient or inferior outcomes.

This free-riding problem appears in major applications throughout economics, including

public economics (public good provision), political economy (vote buying), and industrial

organization (exclusive deals). The classic reference is Grossman and Hart (1980), on

corporate takeovers. Grossman and Hart show that externalities across shareholders can

prevent takeovers that add value to the company. The idea is that since shareholders that

do not sell can capture the increase in value brought by the raider, no shareholder will

tender his shares at a price that would allow the raider to profit from the takeover.

The problem is particularly severe when the principal contracts with agents sequentially

(Rasmusen et al. (1991), Segal and Whinston (2000), Genicot and Ray (2006)), as it is

often the case in practice in political endorsements, vote buying, and exclusive deals.1

But what if two incumbent firms were to compete for exclusive contracts, or two lobbies

were to compete for committee members’ votes, or if the incumbent management were

to fight a raider’s attempt to takeover the firm? Would agents benefit from competition

between opposing principals in these contexts?

We address this question within a simple dynamic model in which either a single principal

or two competing principals vie for the support of members of a group. Agents choose

sequentially between two options, and in so doing interact with principals who attempt

to influence their decisions. When enough agents chose one side, that side wins.2

Our main result is that competition reduces agents’ welfare when the principal’s policy

provides value to (non-contracting) agents relative to the status quo. This is what we

call a public good setting. In fact, when agents face two equally good alternatives, agents

are always better off when facing a single principal than two competing principals. In

general, with public goods, agents are always better off with a monopoly of the best

alternative than with competition, even if the difference in the value of the two alternatives

1Sequential contracting can arise for various reasons. A common feature of the situations in which
sequential contracting is pervasive is the irreversibility of agents’ actions, which is induced by contracts,
reputational losses, and relation specific investments in different contexts. In this paper, we take sequential
contracting as given and explore its consequences.
2Prat and Rustichini (2003) also study contracting with multiple principals and multiple agents, but in
a static setting with private values and no externalities, and focus on efficiency concerns.
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is arbitrarily small. With public bads, instead – when the principal’s policy is inferior to

the status quo – the results reverse and competition is indeed beneficial to agents.

The superiority of monopoly to competition depends crucially on the nature of the free-

riding effect. In a public good setting – as it is the case with an efficient raid – agents

benefit from not trading with the principal. In this context, free-riding opportunities give

agents bargaining power vis-à-vis the principal. Competition harms agents because it

reduces the value of free-riding, and thus diminishes their bargaining power.

In the main part of the paper we present a stripped-down model that isolates the key

aspects of the problem. In this benchmark model, followers’ payoffs in terminal nodes are

unaffected by whether they supported the winner, the loser, or remained uncommitted.

An indirect consequence of this simplifying assumption is that transfers from principals

to agents are positive in the public bad model, but negative with public goods, a feature

that can be unappealing in some applications. In Section 4.2 we consider an extended

version of the model where we allow payoffs to depend on whether each follower backed

a winning or losing candidate, and apply the model to study corporate takeovers, vote

buying, and exclusive deals. We show that the direction of the cash transfer is unrelated

to whether the decision involves a public good or bad, and hence on whether competition

is hurtful or beneficial for followers.

The expanded model shows that the key consideration for our result is whether completion

of the project implies a positive or negative externality on uncommitted followers.3 With

positive externalities on uncommitted followers, meeting the principal is bad news for

agents, and agents have an incentive to free ride. In the benchmark model this is only

due to cash transfers, but the expanded model shows that this happens even when cash

transfers go in the opposite direction. The key point is that competition reduces agents’

welfare when there are positive externalities on uncommitted followers precisely because

in this case competition reduces agents’ free riding opportunities.

Our paper contributes primarily to the literature on contracting with externalities. These

papers explore problems in which a single principal contracts with a group of agents in the

presence of externalities among agents.4 The most closely related papers are Rasmusen et

al. (1991), Segal and Whinston (2000) and Genicot and Ray (2006), which study sequential

3The importance of positive and negative externalities, as well as increasing or decreasing externalities
among agents in contracting models was first highlighted in a static setting by Segal (1999). The focus
of this paper is on how the type of externalities among agents affect efficiency. See also Segal (2003).
4See Segal (1999) for a model of contracting with externalities that unifies various applications.
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contracting.5 These papers show that when agents impose negative externalities on each

other by contracting with the principal, sequential contracting exacerbates the free-rider

problem among agents.6 The literature on contracting with externalities is closely related

to our monopolistic model (Section 3), where the externality is due to the fact that

agents make a collective decision. The key innovation of our paper is to extend the

model of sequential contracting with externalities to a competitive setup and –primarily

– to compare the welfare of agents under monopoly and competition.7 In fact, as we

foreshadowed above, the result that monopoly is preferred to competition with public

goods depends crucially on the nature of the free-riding effect introduced by Grossman

and Hart (1980), and is linked to the direction of externalities on non-traders emphasized

by Segal (1999).

Our paper also contributes to the literature on vote buying and interest group influence

developed in political economy. In these papers, two lobbyists compete offering transfers

to members of a committee to obtain their support in favor or against a bill (see for

example Myerson (1993), Groseclose and Snyder (1996)). Our paper is closest to Dekel

et al. (2008, 2009). The fundamental innovation here is to introduce sequential vote

buying with two principals and strategic agents. Our paper is also related to the models

of innovation races pioneered by Harris and Vickers (1985, 1987). However there are

important differences. Most directly, while we focus on agents’ welfare, these agents are

absent in the models of races, which focus on the game among principals. As a result,

the free riding problem at the core of our paper is absent in this literature, as is the

interaction of principals with strategic, forward-looking agents.8

Finally, our conclusion has a point of contact with Olson (2000)’s governance argument

that a stationary monopolistic bandit may be better than competition. Both arguments

are fundamentally about externalities. Olson’s argument is that the monopolistic leader

internalizes to a larger extent the effect of her actions on total surplus. In our model,

5See also Galasso (2008), Möller (2007), and Rasmusen and Ramseyer (1994).
6Segal and Whinston (2000), Segal (2003) and Dal Bo (2007) show that the principal can exploit agents
in a static setting if she can make discriminatory offers.
7The literature on non-cooperative coalitional bargaining games with externalities considers general bar-
gaining problems with multiple agents (Bloch (1996), Ray and Vohra (1999), Ray and Vohra (2001),
Gomes (2005), Gomes and Jehiel (2005)). These papers aim to establish efficiency, existence and unique-
ness properties in this class of games.
8More indirectly, our paper connects with the literature on competition in public goods (see Bergstrom
et al. (1986), Ghosh et al. (2007)), in which individuals simultaneously choose contributions to multiple
public goods. In these papers consumers do not interact with principals influencing their decision.



4 MATIAS IARYCZOWER AND SANTIAGO OLIVEROS

instead, agents prefer monopoly to competition when competition reduces their bargaining

power vis a vis the leaders by reducing free riding opportunities.

2. The Model

Two leaders, A and B, compete to gather the support of a majority of agents (followers)

in a group of size n. The first leader to obtain the commitment of q ≡ (n+ 1)/2 members

wins, and implements her preferred alternative. There is an infinite number of periods,

t = 1, 2, . . .. In each period t before a leader wins, any one of the k(t) uncommitted

followers at time t meets leader ` = A,B with probability π`/k(t) > 0, where πA+πB = 1.

Say that at the time of the meeting, ` needs m` additional followers to win, and let

~m ≡ (mA,mB). In the meeting with an uncommitted follower i, leader ` makes a TIOLI

offer p`(~m) ∈ R to secure i’s support.9 Follower i can accept or reject `’s offer; if he accepts,

i commits his support for ` and receives p`(~m), if he rejects, i remains uncommitted.

Leader ` gets a payoff of v` > 0 if and when she wins, and v` if and when her opponent

j 6= ` wins, v` > v`. In any period before a leader wins, both leaders get a payoff of zero

(a normalization). Followers get a payoff w` if and when leader ` wins, and a payoff of

zero in each period t before a leader wins. We initially assume that both leaders provide

value to the agents; i.e., w` > 0 for ` = A,B. We refer to this case as a public good case.

We then consider the public bad case, in which w` < 0 for ` = A,B. Leaders and followers

have discount factor δ ∈ (0, 1).

The solution concept is Markov Perfect equilibrium (MPE). We let W (~m) denote the con-

tinuation value of an uncommitted follower in state ~m ≡ (mA,mB), Wout(~m) denote the

continuation value of a committed follower in state ~m, and V`(~m) denote the continuation

value of leader ` in state ~m. We also define ~mA ≡ (mA− 1,mB) and ~mB ≡ (mA,mB − 1).

As a benchmark, we also consider the case in which there is only one alternative to the

status quo. The model is the same as before, with π` = 0 for some ` = A,B. We denote

the payoffs that the leader and a follower obtain when the leader wins, by v and w. In

the public good case, we initially let w > 0. Leader and followers obtain a payoff of zero

in any period before the leader wins. The state is the number m of additional followers

the leader needs to win. The offer in state m is p(m), the value of an uncommitted and

committed followers are w(m) and wout(m), and the leader’s value v(m).

9This assumption is prevalent in the literature on contracting with externalities (see however Galasso
(2008)). Giving followers some bargaining power does not change our results.
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3. Monopolistic Leadership

We begin by characterizing MPE of the public good model with a single alternative. Here

we proceed informally. Consider first the critical follower facing the leader when m = 1.

Note that since v, w > 0, leader and follower would jointly benefit from moving forward,

securing the leader’s victory. Thus there is a transfer that makes this mutually beneficial,

and in any equilibrium there must be a transaction when m = 1.

In fact in equilibrium this must be true in all states m ≤ q: the leader makes an offer in

every meeting until she collects a majority of followers, and the uncommitted followers

who meet the leader accept these offers. We refer to this as a full trading equilibrium

(FTE). To see why this is an equilibrium, suppose there are m > 1 followers remaining.

Since in the proposed equilibrium there is trade whenever the leader needs to secure the

support of t < m additional followers, in m it is also jointly beneficial for leader and

follower to move forward, just as in m = 1. As a result, here again there is a transfer that

makes an agreement mutually beneficial.

Now consider any MPE, and suppose that there is trade whenever the leader needs to

secure the support of t < m additional followers. If in state m the leader does not make

an offer with positive probability or the follower does not accept the offer with positive

probability, leader and follower would obtain a lower combined payoff in state m than in

the equilibrium with trade. Hence the gain from moving forward would be higher than

in the FTE, and thus positive. It follows that the leader will make an offer, which the

follower will accept. We then have

Proposition 3.1. The unique MPE of the game Γs(q) is a full trading equilibrium. In

this equilibrium, the payoff of a follower is given by

w(q) =

(
q∏

m=1

r(m)

)
δqw for r (m) ≡ n+ 2m− 3

n+ 2m− 1− 2δ

Proposition 3.1 implies that in equilibrium the leader cannot extract all surplus from the

followers. The logic is similar to that behind under-provision of a public good. Note that

since followers benefit from implementing the alternative to the status quo, the leader

actually charges them to move on. By rejecting the offer, a follower can rely on others to

pay the bill. This generates an outside option that gives followers bargaining power over

the leader. Since the cost of deferring implementation of the proposal decreases with δ,
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the value of the outside option is increasing in δ, and so is followers’ equilibrium payoff.

In fact, as δ approaches 1, r(m)→ 1 and w(q)→ w.10

4. Competition and Main Result

Consider next the competitive game Γc(q, q), with two alternatives to the status quo, A

and B, and initial position ~m = (q, q). Recall that we defined ~mA ≡ (mA − 1,mB) and

~mB ≡ (mA,mB−1). Follower i accepts an offer p`(~m) from ` only if p`(~m)+δWout(~m
`) ≥

δW (~m), and accepts with probability one if this inequality is strict. Thus in equilibrium,

if ` makes an offer, she offers

(1) p∗`(~m) ≡ −δ[Wout(~m
`)−W (~m)].

The offer by ` has to compensate i for what he would obtain if he were to refuse to commit

his support for `, taking him – along with the entire group – back to a position ~m. Leader

` is willing to make this offer if p∗`(~m) ≤ δ[V`(~m
`) − V`(~m)], or substituting p∗`(~m) from

(1), if the surplus for i and ` of taking ` one step closer to the goal is nonnegative; i.e.,

(2) S`(~m) ≡ [V`(~m
`)− V`(~m)] + [Wout(~m

`)−W (~m)] ≥ 0.

In the natural extension of the full trading equilibrium in the monopolistic case to the

competitive game, leaders make relevant offers in all states ~m such that mA,mB ≤ q.

Differently than its counterpart in the monopoly game, this strategy profile is not always

an equilibrium in this context. With this in mind, in the next proposition we establish

two results. First, we prove that the competitive game has a MPE equilibrium. Second,

we provide a sufficient condition for the existence of a FTE in the competitive game.

Proposition 4.1. (i) The competitive game Γc(q, q) has a MPE; (ii) All else equal, if the

leaders’ payoff for winning is sufficiently high, the game has a FTE, with the value of an

uncommitted follower in state ~m given by

(3) W (~m) =
∑

j=A,B

(δπj)
mj

m−j−2∑
l=0

mj−1+l∏
k=0

r

(
m−j+mj−k −

n+ 1

2

)(mj− 1+l

mj−1

)
(δπ−j)

l

wj ,
where we have adopted the convention that for any f(·),

∑b
k=a f(k) = 0 if b < a.11,12

10Incidentally, we note that since w(m)/δw(m− 1) = r(m) < 1 for all m, conditional on trading at some
point, a follower is better off if approached later in the process.
11Note that W (~m)→ wA(m) (as characterized in Proposition 3.1) as πB → 0.
12Note this equilibrium is inefficient, as the worst alternative wins with positive probability. This result
is in line with the literature on non-cooperative coalitional bargaining games with externalities, which
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We are now ready to compare followers’ equilibrium payoffs under monopoly and compe-

tition. We begin by considering FTE of the competitive game with three followers.

Example 4.2. Suppose n = 3. Consider first the state ~m = (1, 1), reached after one

follower has committed for each leader. From (1), leader ` = A,B offers the follower

p`(1, 1) = δ[W (1, 1)− w`], which the follower accepts. Thus

W (1, 1) = πA (pA (1, 1) + δwA) + πB (pB (1, 1) + δwB) = δW (1, 1) ,

so that W (1, 1) = 0. Because only one follower remains uncommitted there are no free

riding possibilities and all surplus is extracted by the leaders. Consider next the state

~m = (1, 2). As before, a follower meeting the leader gets a payoff δW (1, 2), and thus

W (1, 2) =
1

2
δW (1, 2) +

1

2
(πAδwA + πBδW (1, 1))

Thus W (1, 2)=(δπA/(2− δ))wA > 0 = W (1, 1). Similarly, W (2, 1) = (δπB/(2− δ))wB
and then

(4) W (2, 2) =

(
2δ2

3− δ
1

2− δ

)(
(πA)2wA + (πB)2wB

)
Now, from the single leader case we have,

w(2) =

(
2δ2

3− δ
1

2− δ

)
w

Note that the expression in parenthesis is equal to the corresponding expression in (4).

Thus, if w=wA≥wB, followers prefer a monopoly of A to competition between A and B,

for any discount factor δ<1. Furthermore, when ∆w = wA − wB is small, followers also

prefer a monopoly of B to competition if πA ≈ 1/2. �

The fact that in this example there are only three agents is not important for this result.

In fact, a comparison of followers’ value in Proposition 4.1 and Proposition 3.1 shows that

the example generalizes to FTE with n agents. The example illustrates two important

lessons. First, since a monopoly can improve followers’ welfare relative to competition

even for δ → 1, the reason why followers are better off under single leadership is not solely

explained by delay. Second, because sometimes a monopoly of the worst leader dominates

competition, the reason behind the followers’ welfare ordering cannot be solely due to the

“risk” of ending up collectively selecting the worst choice available.

has shown that inefficiency is the norm in these class of games (Bloch (1996), Ray and Vohra (1999), Ray
and Vohra (2001), Gomes (2005), Gomes and Jehiel (2005)).
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The key to understand the result is in how the followers’ bargaining power changes across

the two games. Followers prefer monopoly to competition because competition reduces

their free-riding ability, which directly lowers their bargaining power vis a vis the leaders.

This is captured in eq. (3), which shows that the source of value is the probability of all

paths leading to successful free riding until completion.

To see this intuitively, consider the problem of the critical follower in monopoly (the qth

member to meet the leader). If the critical follower refuses an offer by the leader, he will

be able to free ride on others with probability (q− 1)/q = (n− 1)/(n+ 1). This relatively

high free-riding ability gives the critical follower considerable bargaining power against

the leader and protects him from getting fully expropriated. Now consider the problem of

a critical follower under competition (a follower who could give one of the leaders a win).

The number of uncommitted followers in this situation is at most as large as in monopoly.

In fact, if the battle between the leaders is even until the end, the critical follower could

meet the leader in state ~m = (1, 1). But here there are no free riding possibilities.

This situation is extreme, but the logic generalizes to other states in which the number of

uncommitted followers is lower than in the single alternative case. To see this, consider the

competitive and monopolistic games with n = 5 and wA = wB = w. Using Proposition

3.1 and eq. (3), w(3) > W (3, 3) boils down to 1 >
∑

j=A,B(πj)
3
[
1 + 3

2−δ (δπ−j)
]
. Letting

γ(~m) denote the probability of reaching the node ~m from the initial node (q, q) in a

competitive equilibrium, we can write this as

(1− δ) [γ(2, 1) + γ (1, 2) + γ (1, 1)] +
1

2
δγ (1, 1) > 0.

This shows that the difference in value across games comes from those nodes in which the

number of uncommitted followers cannot be reached in monopoly.13

In the discussion so far we have assumed a FTE in the competitive game. For some

parameters, though, equilibrium will require that one of the leaders does not make an offer

in some states, or only makes an offer with positive probability. Moreover, in contrast to

the monopoly game, we can not guarantee that the equilibrium of the competitive game

will be unique. Theorem 4.3 – our main result – shows that the result holds for any

number of agents n, and any MPE.

13Both delay and free-riding vanish as δ → 1, because patience eliminates the source of power that free-
riding gives to the followers. However, these are two distinct effects. In fact, delay is not necessary for
the result. Note that as δ → 1 all terms vanish except ~m = (1, 1), in which the remaining follower has
no opportunity to free-ride.
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Theorem 4.3. Let W (q, q) denote the payoff of an uncommitted follower in a MPE of the

game with two alternatives A and B such that wA ≥ wB > 0. Then (i) W (q, q) < wA (q).

Moreover, (ii) there exists ε > 0 such that if wA − wB < ε, W (q, q) < wB (q).

The proof is by induction and consists of four steps:

(1) In any state ~m there is always an alternative j ∈ {A,B} s.t. followers are better

off after moving one step in the direction of j; i.e., W (~m) < maxj∈{A,B} {W (~mj)}.
(2) When a principal j is one step away from winning followers would be strictly

better off by removing one of the alternatives from consideration; e.g., W (mA, 1) <

max{wA (mA) , wB (1)}. (Connects the competitive and monopolistic games.)

(3) Combining steps 1 and 2 we show that when principal j is two steps away from

winning followers would be strictly better off removing one of the alternatives from

consideration; e.g., W (mA, 2) < max {wA (mA) , wB (2)} for all mA ≥ 2.

(4) Induction step for ~m ≥ (3, 3): if W
(
~mB
)
≤ max {wA (mA) , wB (mB − 1)} and

W
(
~mA
)
≤ max {wA (mA − 1) , wB (mB)} thenW (~m) ≤ max {wA (mA) , wB (mB)}.

Theorem 4.3 states that a monopoly of the better alternative is better for followers than

competition at the beginning of the game, from a position of symmetry.14 The sketch of

the proof, however, makes clear that the comparison holds in the entire state space. It

follows that the presence of an initial advantage would not alter our results.

Corollary 4.4. Let W (qA, qB) denote a follower’s payoff in a MPE of the competitive

game with initial position (qA, qB), qA < qB. Then W (qA, qB) < max {wA (qA) , wB (qB)}.

Corollary 4.4 allows us to extend the benchmark model to arbitrary non-unanimous q-

rules. Say B needs to obtain the support of a supermajority qB > (n+1)/2 of members to

implement a reform leading to a value of wB > 0 for the followers, while A can block the

reform by getting the support of qA = n − qB members, leading to wA = 0. This model

is formally equivalent to introducing initial advantages, with the exception that wA = 0.

Thus Corollary 4.4 applies to this case as stated.15

14Our statement concerns only followers’ welfare. In the special case of δ → 1, wA = wB = w, and a FTE
in competition, the overall surplus is in fact unchanged and thus the aggregate welfare of the leaders is
larger in competition. In general, competition can increase or decrease total welfare.
15Because unanimity eliminates free riding opportunities, monopoly under unanimity is worst for fol-
lowers than competition under simple majority. We can then show that for any submajority rule Q in
competition there exists a rule q̂(Q) ≥ Q in monopoly such that the value of an uncommitted follower
under competition with rule Q is at most (at least) the value of an uncommitted follower under monopoly
with rule q̂(Q)− 1 (with rule q̂(Q)). We thank an anonymous referee for pointing this out.



10 MATIAS IARYCZOWER AND SANTIAGO OLIVEROS

Part (i) of Theorem 4.3 and Corollary 4.4 focused on the comparison of competition with

a monopoly of the best alternative. Part (ii) of the theorem, on the other hand, shows

that followers can prefer a monopoly of the worst alternative to competition, provided

that the two alternatives are sufficiently close to one another. This outcome is striking.

In our next result we pursue this further, and provide conditions under which this result

can be extended to any wA, wB > 0.

Theorem 4.5. Let W (q, q) denote the payoff of an uncommitted follower in a FTE of

the competitive game with wA, wB > 0. Then ∃ n s.t. if q = (n + 1)/2 > n, W (q, q) <

min {wA (q) , wB (q)}.

Theorem 4.5 builds on the same core intuition behind our main result. Note that in

monopoly, the probability that the critical uncommitted follower will be able to free ride

after refusing an offer from the leader is (n − 1)/(n + 1), which goes to one as n → ∞.

On the other hand, the competitive game can turn out to be very close, even in a large

group. In this case a critical follower in the competitive game can find himself to be one of

only a few uncommitted followers, and as a result have few free-riding opportunities and

therefore less bargaining power. This effect trickles down to the beginning of the game,

and then even a monopoly of the worst alternative is preferred to competition.

We have repeatedly emphasized the crucial role of free-riding for our result. A natural

question then is whether Theorem 4.3 can be generalized to K > 2 principals. Intuition

suggests that if anything, the free-riding argument should be even stronger in this case.

In order to do this, we need to deal with the complexity induced by the higher dimension-

ality of the problem. A key object in the two leader problem is the set of states in which

one trade exhausts free riding opportunities. With two leaders, this happens at ~m = (1, 2)

with a trade with B, and at ~m = (2, 1) with a trade with A. With more than two leaders

there are multiple states in which a single transaction exhausts free riding opportunities,

and in any such state typically multiple such transactions. The idea that allows us to

deal with this higher dimensionality is to recognize that the states in which a transaction

exhausts free riding opportunities are conceptually equivalent to each other, and similarly

that the states in which no transaction exhausts free riding opportunities are conceptually

equivalent to each other, so that the key at any state is to separate transactions that lead

the process to one set or the other set of states. From this point on we can then prove

the result with a generalization of the arguments in the proof of Theorem 4.3.
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Theorem 4.6. Let WK (~q) denote the payoff of an uncommitted follower in a MPE of

the game with K > 2 alternatives ` = 1, 2, . . . , K such that w1>w2> . . . >wK > 0, with

initial position ~q = (q1, q2, . . . , qK). Then (i) WK (~q) < max`{w` (q`)}. Moreover, (ii) if

q`=q ∀` ∈ K, ∃ ε > 0 s.t. for any ` = 1, . . . , K, if w1 − w` < ε, WK (~q) < w` (q).

4.1. Public Bads. Up to this point we assumed that the alternatives under consideration

are public goods, in the sense that followers prefer the outcome associated with a victory

of A or B to the status quo. The logic of the proof of Theorem 4.3, however, suggests that

the analysis above applies to public bads (i.e., wA, wB < 0) almost unchanged, reverting

the result. Intuitively, since with public bads followers can only cut their loses if they are

part of the coalition that supports the leader, a critical agent that refuses the offer with

a single alternative will have a much lower chance of being brought back to the table of

negotiations than a critical follower in a competitive environment, and as a result can

demand a higher transfer in exchange of his support.

In order to apply this result, we first need to establish FTE in monopoly with public bads.

The next proposition shows that the FTE is still the unique MPE as long as the leader’s

win value is sufficiently high, and moreover that any MPE with transactions is a FTE.

Proposition 4.7. Let w < 0. Any MPE is either a FTE or involves no transactions.

Moreover, ∃v > 0 s.t. if v ≥ v, the FTE is the unique MPE of the game.

Proposition 4.7 says that if the leader’s win value is sufficiently large, a leader representing

a policy that is arbitrarily bad for followers can win with the support of a majority of

the group. This is of course terrible news for those agents who are not compensated. In

fact, w(q) goes to the upper bound of zero as δ → 0, and to the lower bound of w < 0 as

δ → 1. The reason for this result is that the leader uses uncommitted followers against

each other, as in Genicot and Ray (2006). Upon meeting, both leader and follower know

that if the follower rejects the leader’s offer, the next follower will accept it. Thus, the

follower can only delay the implementation of the public bad for one period, if he forgoes

any compensation. To prevent this delay, the leader can offer to compensate the follower

for this differential only (and not for the full cost that implementation will bring to the

follower).

With the previous result, we can establish formally our main conclusion.16

16Part (ii) of Theorem 4.3 goes as well, as do Corollary 4.4 and Theorem 4.5.
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Proposition 4.8. Let wA, wB < 0. Let W (q, q) denote the initial value of an uncommitted

follower in a MPE of the competitive game, and let wk (q) denote the initial value of an

uncommitted follower in a MPE with trade of the game in which k = A,B is the only

principal. Then W (q, q) ≥ min {wA (q) , wB (q)}.

4.2. Applications. Up to this point we have studied a stripped-down model in which

followers’ payoffs in terminal nodes are unaffected by whether they supported the winner,

the loser, or remained uncommitted. This model allows us to isolate the key aspects of

the problem, but is not well suited for applications, where this distinction is often natural

or necessary. In this section we consider an extended version of the model where we

distinguish between the insider payoff z` obtained by an individual who gave her support

to ` when ` wins, the outsider payoff w` obtained by an uncommitted follower when `

wins, and – in the competitive model – the rival payoff y` obtained by an individual who

gave her support to j 6= ` when ` wins, and take the model to applications.

Example 4.9. [Corporate Takeovers] Grossman and Hart (1980) (GH) analyze a problem

in which a company (the raider) acquires shares of a target company to control its board of

directors. It is assumed that the raider can improve the value of the company. To capture

this, we assume that under the raider’s control the value of a share is w > 0, and normalize

the value of a share under the incumbent management to zero. We distinguish the payoff

of a shareholder who does not sell to the raider if the raider wins (w > 0) form the payoff

of a shareholder who sells to the raider if the raider wins (z = 0).17We then consider

introducing competition from a second principal (e.g., the incumbent management)

Example 4.10. [Vote Buying] Here we consider a model of sequential vote buying.18 We

think of this model as capturing a process of coalition building that occurs in office deals

prior to the moment the proposal is on the floor for a vote, at which point allegiances

are typically already decided.19 To fix ideas, then, consider a national legislature which is

about to vote on a fiscal restraint bill proposed by the executive. We assume that legislators

– who understand the dire state of fiscal affairs for the state – privately favor the bill

(w > 0). Voters, however, oppose it, so that supporting the bill is costly for legislators;

17As in GH and Segal (2003), we assume shareholders are homogeneous. Differently than GH, we sup-
pose that shareholders are fully aware of the effect of their action on the outcome of the raid attempt.
Holmstrom and Nalebuff (1992) show that when shareholdings are divisible the free-riding problem does
not prevent the takeover process in the GH model.
18See Rasmusen and Ramseyer (1994), Genicot and Ray (2006) with a single principal, and Dekel et al.
(2008, 2009) with two principals and non-strategic agents.
19This is in the spirit of Iaryczower and Oliveros (2016), who study intermediaries in legislative bargaining.
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i.e., z < 0 < w. We then introduce a second option. The executive’s proposal (say A)

aims to reduce the deficit by increasing taxes, while an alternative proposal favored by a

powerful lobby (B) seeks to reduce public expenditures. We assume that legislators prefer

increasing taxes, so that wA > wB > 0.

Example 4.11. [Exclusive Deals] We consider a problem in which two firms compete

for the market of a product with increasing returns to scale signing exclusive contracts

with buyers. Our motivating example is the HD optical disc format war between Blu-

ray and HD-DVD. This problem relates to the analysis in Rasmusen et al. (1991) and

Segal and Whinston (2000), with two key differences. First, we allow both the incumbent

and the “challenger” to sign exclusive contracts. We also assume that both firms are

initially competing in the market. Thus, ours is a model where firms take actions to

induce exit, as opposed to deterring entry. Suppose without loss of generality, that A is

the better technology. Then yA ≥ yB and zA = wA ≥ zB = wB. As is standard in the

literature we assume that buyers’ prices would increase if one of the incumbents exits, so

that wj = zj < 0 for j = A,B.

Consider first a FTE in monopoly.20 Because in equilibrium the follower is indifferent

between accepting or rejecting the offer, the payoff of a follower meeting the leader in

state m is δŵ(m). As a result, the recursive representation of the value of uncommitted

followers is unchanged from the benchmark game (see eq. (8) in the Proof of Proposition

3.1), and thus so is its solution, ŵ(m) = (
∏m

k=1 r(m)) δmw. The value of a committed

follower, on the other hand, is now given by ŵout (m) = δmz ≤ 0 in examples 4.9, 4.10,

and 4.11. Substituting,

(5) p̂(m) = δm+1

([
m∏
k=1

r(k)

]
w − z

)
> 0,

so that transfers are positive in all three cases even as w > 0. In fact, p̂(m)→ w − z for

all m as δ → 1. In the takeover context, this means that as frictions vanish the raider

has to fully compensate shareholders, as in GH. For any δ < 1, however, p̂(m) < w, and

the raider can appropriate some of the surplus it generates.21 In addition, from (5) we

20In Proposition A.9 we show that whenever z ≤ 0 < w, the FTE is the only robust MPE with trade,
and this is the unique MPE for high v. The result for example 4.11 follows directly from Proposition 4.7.
21This result is similar to that of Harrington and Prokop (1993), who consider a dynamic version of GH in
which the raider can re-approach the shareholders who have not sold (at the posted prices). One should
not conclude from this that the leader would always prefer sequential to static contracting or vice versa
(See Appendix 7.5).
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have p̂(m− 1)− p̂(m) > 0. Thus, the price curve is decreasing in m, so that agents who

transact first obtain a lower compensation.

How would competition affect agents’ welfare in these contexts? In the benchmark model

we saw that whenever principals add value, competition is detrimental to followers’ wel-

fare. But now we have positive transfers. The fact is that our main result is not affected

by the direction of transfers. The reason is that in equilibrium followers are indifferent

between accepting or rejecting the offer, and the payoff of a follower meeting the leader

in state ~m is δŴ (~m), independently of whether he accepts or rejects the leader’s offer.

Because of this, as in monopoly, the recursive representation of the followers value is un-

changed from the benchmark model (see eq. (16) in the Proof of Proposition 4.1) and

thus so is its solution; i.e., Ŵ (~m) = W (~m). This implies that the followers’ value only

depends on the outsider payoffs w`, with all the new elements going into the “revised”

cash transfer p̂`(~m).

It follows that the relevant factor determining the effect of competition is whether un-

committed followers would benefit or lose from completion of the project/s relative to

the status quo; i.e., competition is bad for followers when the externality on uncommitted

followers is positive, and beneficial when it is negative. In the case of takeovers, in particu-

lar, this says that shareholders would not benefit from competition between raiders. This

is also the case in example 4.10 as stated, when legislators would gain if the bill passes

without their support. If however we assume that both voters and legislators equally

dislike the project, so that z = w < 0, competition between lobbyists would increase

legislators’ welfare. In our exclusive deals example 4.11, there are negative externalities

on uncommitted agents, wj < 0, and competition increases followers’ welfare.

4.3. Robustness. We end this section by discussing two key assumptions in the model:

(un)observability of trades and (in)direct competition.22

Unobservable Trades. A core assumption in our model is that past deals are observable,

so that the state, m or ~m, is common knowledge. This assumption captures what we

believe is an important dynamic aspect of these problems. The assumption, however,

is not neutral for followers’ equilibrium payoffs. Common knowledge about the state

affects outcomes in both monopoly and competition because the state affects the value

22In Appendix 7.3 we discuss an extension of the model in which followers can choose to reject offers
permanently, leaving the pool of uncommitted followers, and in Appendix 7.4 we revisit our assumption
that leaders offer cash transfers in exchange for a commitment of support, allowing instead promises of
transfers contingent on winning (a “partnership” offer instead of a buyout).
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of free riding opportunities, and thus agents’ bargaining power. Whether unobservability

would upend or reinforce the results in the benchmark model depends on whether this

increases agents’ bargaining power in competition significantly more than what it does in

monopoly, or the reverse is true. To explore this question, in Appendix 7.1 we analyze the

monopoly and competitive games under non-observability for n = 3, following Noe and

Wang (2004). We show that still in this case, monopoly is preferred to competition. This

is because unobservability of trades doesn’t change the underlying fact that the expected

value of free riding opportunities (now also over states) is larger under monopoly than

under competition.

Direct Competition. In our model we assumed a sequential contracting setup, in which

leaders and followers make deals in bilateral meetings. We believe that this is a natural

setup for the applications we have in mind, where individual deals are more common than

organized markets. A consequence of this assumption is that competition is “indirect”

in the sense that it affects trades only through its effect on followers’ outside options.23

In Appendix 7.2 we introduce the possibility of direct competition; i.e., w.p. πAB > 0,

both leaders make simultaneous offers to the followers. Direct competition improves the

standing of competition vis a vis monopoly, because followers can extract additional rents

from the winning leader. This new effect now competes with the free-riding effect which

favors monopoly, and can overturn it for some configurations of parameters. But because

additional rents are heavily captured by agents at the later stages in the game, followers

see a reduced advantage from direct competition in early stages. Because of this, our

results are quite robust to the presence of direct competition, even for large πAB when

there are no frictions (for δ close to one).

5. Conclusion

In this paper, we consider a class of dynamic collective action problems in which either a

single monopolistic principal or two competing principals vie for the support of members

of a group. We show that when the principals’ policy provides value to the agents,

competition reduces agents’ welfare. The key to this result is that competition hurts

agents because it reduces their free-riding opportunities.

23This is how competition among proposers enters in the vast majority of collective bargaining models,
including all models in the tradition of Baron and Ferejohn (1989) and Chatterjee et al. (1993).
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In the main part of the paper we worked with a stripped-down model in which followers’

payoffs in terminal nodes are unaffected by whether they supported the winner, the loser,

or remained uncommitted. We then generalized this model, allowing followers’ payoffs to

depend on whether each follower backed a winning or losing alternative. The expanded

model shows that the key consideration for our result is whether an uncommitted fol-

lower would benefit or lose from completion; i.e., competition is bad for followers when

the externality on uncommitted followers is positive, and beneficial when it is negative.

Competition reduces agents’ welfare when there are positive externalities on uncommitted

followers precisely because in this case it reduces agents’ free riding opportunities.

Much work remains ahead. In Section 4.3 we discussed non-observability of trades and

direct competition. Both suggest promising avenues for further research.

A major direction for future research is a systematic treatment of competitive sequential

contracting with heterogeneity among followers. In our model we have assumed agents

are ex ante homogeneous. This seems a reasonable first step. First, because agents are

ex ante homogeneous, any differential treatment an agent obtains in equilibrium is only

due to the state in which he bargains with the leader/s. This allows us to isolate cleanly

the core mechanism in the model. Second, having a homogeneous pool of agents leads to

an unambiguous comparison of agents’ welfare under monopoly and competition. Third,

this assumption simplifies the analysis considerably. The difficulty is that heterogeneity

increases the size of the state space considerably. In addition to tracking the number

of followers that each leader needs to win, the state space must now also keep track of

the identity and characteristics of each one of the uncommitted followers. This becomes

relevant as leaders may want to exclude some agents from negotiations in order to extract

more surplus from other followers, introducing strategic distributional considerations.

Potential equilibrium strategies, then, quickly become very complicated as n increases,

as trades depend on a very large state space. With this caveat in mind, we believe that

a full analysis of competitive sequential contracting with heterogeneity among followers

will open interesting questions. We leave this endeavor for future research.
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Möller, Marc, “The timing of contracting with externalities,” Journal of Economic

Theory, 2007, 133 (1), 484–503.

Myerson, Roger B., “ Incentives to Cultivate Favored Minorities Under Alternative

Electoral Systems,” American Political Science Review, December 1993, 87, 856–869.

Noe, Thomas H and Jun Wang, “Fooling all of the people some of the time: a theory of

endogenous sequencing in confidential negotiations,” The Review of Economic Studies,

2004, 71 (3), 855–881.

Olson, Mancur, Power and prosperity: Outgrowing communist and capitalist dictator-

ships: Outgrowing communist and capitalist dictatorships, Basic books, 2000.

Prat, Andrea and Aldo Rustichini, “Games played through agents,” Econometrica,

2003, 71 (4), 989–1026.

Rasmusen, Eric and J Mark Ramseyer, “Cheap bribes and the corruption ban: A

coordination game among rational legislators,” Public Choice, 1994, 78 (3-4), 305–327.

Rasmusen, Eric B, J Mark Ramseyer, and John S Wiley Jr, “Naked Exclusion,”

The American Economic Review, 1991, pp. 1137–1145.

Ray, Debraj and Rajiv Vohra, “A theory of endogenous coalition structures,” Games

and Economic Behavior, 1999, 26 (2), 286–336.

and , “Coalitional power and public goods,” Journal of Political Econ-

omy, 2001, 109 (6), 1355–1385.

Rubinstein, Ariel, “Perfect equilibrium in a bargaining model,” Econometrica, 1982,

pp. 97–109.

Segal, Ilya, “Contracting with Externalities,” Quarterly Journal of Economics, 1999,

114 (2), 337–388.

, “Coordination and discrimination in contracting with externalities: Divide and

conquer?,” Journal of Economic Theory, 2003, 113 (2), 147–181.

Segal, Ilya R and Michael D Whinston, “Naked exclusion: comment,” American

Economic Review, 2000, pp. 296–309.



COMPETING FOR LOYALTY 1

6. Online Appendix A: Proofs

Proof of Proposition 3.1. We begin allowing a MPE in mixed strategies. When the leader meets
follower i in state m, she makes an offer p(m) with probability γm ∈ [0, 1]. The follower accepts
the offer with probability αm ∈ [0, 1]. Note that the follower i meeting the leader in state m
accepts only if δwout(m−1)+p(m) ≥ δw(m), and accepts with probability one if this inequality
holds strictly. Note that since i accepts offers p(m) > −δ[wout(m− 1)−w(m)] with probability
one, then any such proposal cannot be offered in equilibrium, for L could make a lower offer and
still get accepted. Thus, whenever L meets a follower i in state m, she offers

(6) p(m) =

{
−δ[wout(m− 1)− w(m)] if (7) holds
−∞ otherwise.

L is willing to make the offer in state m if

αm[δv(m− 1)− p(m)] + (1− αm)δv(m) ≥ δv(m),

which boils down to
p(m) ≤ δ[v(m− 1)− v(m)],

as before. Thus the leader obtains a non-negative payoff from making an offer if and only if

(7) s(m) ≡ [v(m− 1)− v(m)] + [wout(m− 1)− w(m)] ≥ 0

Now suppose that in equilibrium (7) holds strictly in state m. Then the follower meeting the
leader in state m must accept all such offers; i.e., αm = 1. This is because since the follower
accepts any offer higher than −δ[wout(m− 1)− w(m)], if αm < 1 the leader would increase the
offer slightly, getting a discrete gain in payoffs. Thus, if in equilibrium the follower rejects the
leader’s offer with positive probability in state m, (7) must hold with equality in state m; i.e.,
if αm < 1, then

s(m) = [v(m− 1)− v(m)] + [wout(m− 1)− w(m)] = 0

The value of an uncommitted follower in state m is

w(m) =

(
2

n+ 2m− 1

)
δw(m) +

(
n+ 2m− 3

n+ 2m− 1

)
δ[γmαmw (m− 1) + (1− γmαm)w (m)],

or equivalently,

(8) w(m) = Hmδw (m− 1) ,

where

Hm ≡
(

(n+ 2m− 3)γmαm
n+ 2m− 1− 2δ − (n+ 2m− 3)δ(1− γmαm)

)
Thus

(9) w(m) =

[
m∏
k=1

Hk

]
δmw

The value of a committed follower in state m is

wout (m) = γmαmδwout (m− 1) + (1− γmαm)δwout (m)

or

wout (m) =

(
γmαmδ

1− δ(1− γmαm)

)
wout (m− 1)
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so that

(10) wout (m) =

[
m∏
k=1

(
γkαk

1− δ(1− γkαk)

)]
δmw.

The value for the leader in state m is

v(m) = γmαm(δv(m− 1)− p(m)) + (1− γmαm)δv(m)

or

(11) v(m) =

(
γmαmδ

1− δ(1− γmαm)

)
(v(m− 1) + wout(m− 1)− w(m)),

Now suppose that in equilibrium L makes a relevant offer in every m > 1. We will solve for the
equilibrium values and then come back and verify that (7) holds for all m to check that this is
an equilibrium. First, note that since L makes a relevant offer in every meeting, (9) boils down
to

(12) w(m) =

[
m∏
k=1

(
n+ 2k − 3

n+ 2k − 1− 2δ

)]
δmw =

[
m∏
k=1

r(k)

]
δmw

and (10) boils down to

(13) wout (m) = δmw.

Substituting (12) and (13) in (11), we have

v (m) = δv (m− 1) +

(
1− δ

m∏
k=1

r(k)

)
δmw

Recursively we have that

(14) v (m) = δmv +

[
m∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
δmw

Then note that

v(m− 1)− v(m) = δm−1(1− δ)v+ δm−1w

{
(1− δ)

m−1∑
l=1

(
1− δ

l∏
k=1

r(k)

)
− δ

(
1− δ

m∏
k=1

r(k)

)}
and

w(m)− wout(m− 1) = −

[
1− δ

m∏
k=1

r(k)

]
δm−1w

so substituting, (7) is

s∗(m) = (1− δ)δm−1
[
v + w

m∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
≥ 0

which is satisfied if and only if

v + w
m∑
l=1

(
1− δ

l∏
k=1

r(k)

)
≥ 0



COMPETING FOR LOYALTY 3

Because this always holds for v > 0 and w > 0, it follows that this is an equilibrium.

Next we show that this is the unique equilibrium with an induction argument. First note from
(9) and (11) that for all m ≥ 1, v(m) and w(m) are maximized when γm = αm = 1. Then
s∗(1) ≥ 0 implies s(1) = [v − v(1)] + [w − w(1)] > 0 whenever γ1α1 < 1. It follows that in state
m = 1 the leader makes a proposal with probability one; i.e., γ1 = 1. But then α1 = 1 as well.
For suppose α1 ∈ (0, 1). Then s(1) > 0 and the leader would gain by increasing the offer slightly,
getting it accepted with probability one. Now suppose that in equilibrium γt = αt = 1 for all
t < m. Consider the surplus in state m. Note that v(m− 1) and wout(m− 1) are exactly as in
the equilibrium characterized above. Since v(m) and w(m) are maximized when γm = αm = 1,
then s∗(m) ≥ 0 implies s(m) > 0 whenever γmαm < 1. Thus γm = 1. As before, then also
α1 = 1, for otherwise s(m) > 0 and the leader would gain by increasing the offer slightly, getting
it accepted with probability one.

Proof of Proposition 4.1. Part (i) follows from standard arguments (click here for details). Next
consider part (ii). Let β(~m) denote the probability that any given uncommitted follower meets
with one of the leaders. Note if ` has to secure the support of m` more followers there are
(n + 1) − mA − mB committed followers, and mA + mB − 1 uncommitted followers. Then
β(~m) = 1/(mA + mB − 1). As in the examples, eq. (1) implies that the expected payoff of
a follower after meeting one of the leaders is δW (~m) independently of whether he accepts the
proposal or not. This is a crucial property, for it allows us to decouple the system of partial
difference equations for W (~m) and V`(~m), ` = A,B. Then

(15) W (~m) =

(
1

mA +mB − 1

)
δW (~m) +

(
mA +mB − 2

mA +mB − 1

)
δ
∑
`

π`W (~m`),

so that letting C(k) ≡ k−2
k−(1+δ) , we have

(16) W (~m) = C(mA+mB)δ
∑
`

π`W (~m`).

Equation (16) is a partial difference equation with end points W (mA, 0) = wB for mA > 0 and
W (0,mB) = wA for mB > 0, and W (1, 1) = 0, which we can solve to obtain (3).

Having obtained the expression for W (~m) in terms of the fundamentals, we can write down
equilibrium transfers. Note that once a follower is committed, all strategic considerations are
brushed aside, as a committed follower just needs to wait for a leader to form a majority. Thus

(17) Wout (~m) =
∑
j=A,B

(δπj)
mj ×

m−j−1∑
l=0

(
mj − 1 + l

l

)
× (δπ−j)

l

× wj
From equation (1), expressions (3) and (17) pin down equilibrium transfers p`(~m) in terms of
the fundamentals. This in turn allows us to solve for the value of the leaders, which is given, in
recursive form, by

(18) V` (~m) = π`

(
δV`

(
~m`
)
− p` (~m)

)
+ (1− π`)δV`

(
~m−`

)
Once we write transfers in terms of the primitives, (18) becomes a stand alone difference equation,
which we can solve. This allows us to prove the next result.

https://dl.dropboxusercontent.com/u/954402/Existence_MPE.pdf
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We will show that for any j = A,B there is a v∗ ∈ R+ such that if vj ≥ v∗, when all players
play the proposed equilibrium strategies, Sj(~m) ≥ 0 for all ~m.

Consider the surplus expression (2). Note that (3) and (17) imply that Wout(~m
j)−W (~m) does

not depend on (vA, vA, vB, vB). It follows that v−j and v−j do not affect Sj(~m), and vj and

vj enter Sj(~m) only through the term Vj(~m
j)− Vj(~m). Now, note that having expressed pj(~m)

in terms of the primitives of the model, we can solve (18) as a stand alone partial difference
equation, to obtain

Vj (~m) = (δπj)
mj

m−j−1∑
l=0

(
mj − 1 + l

l

)
(δπ−j)

l

 vj
+ (δπ−j)

m−j

mj−1∑
l=0

(
m−j − 1 + l

l

)
(δπj)

l

 vj −H(~m).

(19)

where H(~m) is a function of prices pj(r, s) for r ≤ mj , s ≤ m−j , which are constant in
(vj , vj , v−j , v−j) by (3) and (17). Thus Vj(~m

j)− Vj(~m) is given by

(δπj)
mj−1

m−j−1∑
l=0

(
mj − 2 + l

l

)
(δπ−j)

l

− (δπj)
mj

m−j−1∑
l=0

(
mj − 1 + l

l

)
(δπ−j)

l

 vj

− (δπ−j)
m−j

(
mA +mB − 2

mj − 1

)
(δπj)

mj−1 vj +H(~m)−H(~mj).

We will show that this expression can be made arbitrarily large by increasing vj or reducing
vj . From the second line it follows that all else equal, there is a v∗ such that if vj < v∗, then
Sj(~m) > 0. Next, after some algebra, the bracket in the first line can be written as

(δπj)
mj−1

(1− δ)
m−j−1∑
l=0

(
mj − 1 + l

l

)
(δπ−j)

l +

(
mA +mB − 2

mj − 1

)
(δπ−j)

m−j

 > 0.

Thus, all else equal, there is a v∗ such that if vj > v∗, then Sj(~m) > 0.

Proof of Theorem 4.3. Let γj (~m) be the probability that leader j = A,B makes an offer in state
~m, αj (~m) be the probability that an uncommitted follower accepts an offer from leader j = A,B
in state ~m, and µj (~m) ≡ γj (~m)αj (~m). Then

W (~m) =

(
1

mA +mB − 1

)
δW (~m)

+

(
mA +mB − 2

mA +mB − 1

) ∑
j=A,B

πj

(
µj (~m) δW

(
~mj
)

+ (1− µj) δW (~m)

)
.

(20)
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For j = A,B, define

ξj (~m) ≡ δπjµj (~m)(
mA+mB−1
mA+mB−2

)
(1− δ) + δ

∑
j=A,B πjµj (~m)

whenever ~m 6= (1, 1), and ξj (1, 1) ≡ 0. Then we can write (20) as

(21) W (~m) =
∑
j=A,B

ξj (~m)W
(
~mj
)

for all ~m and j = A,B. Note in particular that the recursion (21) implies that if wA, wB > 0
(as we are assuming here), then W (~m) ≥ 0 for all ~m.

We need to show that W (q, q) < max {wA (q) , wB (q)}. The proof follows from three lemmas.
Lemma A.2 establishes the result for q = 1 and shows an additional result for all boundary
states which is used in Lemma A.3. The proof for interior states is by induction. Lemma
A.3 establishes the base case, and Lemma A.4 the induction step. Iterative application of the
induction step covers the entire state space and establishes the result. We begin with Lemma
A.1, which establishes an intermediate result that is used in the proof of Lemmas A.2 and A.4.

Lemma A.1 (Bound). In any MPE of the game Γ(~m),

W (~m) ≤ max
j∈{A,B}

{
δr (mj)W

(
~mj
)}

Proof of Lemma A.1. Note that for all mA ≥ 2,mB ≥ 2 we have

W (~m) = ξA (~m)W
(
~mA
)

+ ξB (~m)W
(
~mB
)

Thus we need to show that

∑
j=A,B

ξj (~m)W
(
~mj
)
≤ δmax

{
r (mA)W

(
~mA
)
, r (mB)W

(
~mB
)}

Without loss of generality assume that W
(
~mA
)
≥W

(
~mB
)

so it is sufficient if ∑
j=A,B

ξj (~m)

W (
~mA
)
≤ δmax

{
r (mA)W

(
~mA
)
, r (mB)W

(
~mB
)}

Note that since r (m) = n+2m−3
n+2m−(1+2δ) , then ∑

j=A,B

ξj (~m)

 =
δ [πAµA (~m) + πBµB (~m)]

mA+mB−1
mA+mB−2 (1− δ) + δ [πAµA (~m) + πBµB (~m)]

≤ δmin {r (mA) , r (mB)} .

(22)

Then it is sufficient if

min {r (mA) , r (mB)}W
(
~mA
)
≤ max

{
r (mA)W

(
~mA
)
, r (mB)W

(
~mB
)}
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which is true when either r (mA)W
(
~mA
)
≥ r (mB)W

(
~mB
)

or the opposite holds.

Lemma A.2 (Boundaries).

W (mA, 1) < wB (1) for all mA ≥ 1 and W (1,mB) < wA (1) for all mB ≥ 1

Proof of Lemma A.2. The result for state ~m = (1, 1) follows immediately from the fact that
W (1, 1) = 0. Now consider the remaining boundary states (states adjacent to terminal states).
Solving the recursion (21) for the boundaries, we obtain

W (mA, 1) =

(
mA−1∑
l=1

ξB (mA − l, 1)
l−1∏
k=0

ξA (mA − k, 1) + ξB (mA, 1)

)
wB(23)

W (1,mB) =

(
mB−2∑
l=1

ξA (1,mB − l)
l−1∏
k=0

ξB (1,mB − k) + ξA (1,mB)

)
wA(24)

for all mA,mB ≥ 1.

Consider ~m = (2, 1). Note that since

W (2, 1) =
δπBµB (2, 1)

2 (1− δ) + δ (πAµA (2, 1) + πBµB (2, 1))
wB

for n ≥ 3,

W (2, 1) <
δ

2− δ
wB <

(n− 1)δ

n+ 1− 2δ
wB = r(1)δwB = wB(1)

By the same argument, W (1, 2) < wA (1). Next, consider W (mA, 1) for mA ≥ 3. We have

W (mA, 1) =

(
mA−3∑
l=0

ξB (mA − (1 + l) , 1)
l∏

k=0

ξA (mA − k, 1) + ξB (mA, 1)

)
wB

=

( ∑mA−3
l=0 [ξB (mA − (1 + l) , 1) + ξA (mA − (1 + l) , 1)− 1]

∏l
k=0 ξA (mA − k, 1)

−
∏mA−2

k=0 ξA (mA − k, 1) + (ξB (mA, 1) + ξA (mA, 1))

)
wB ,

and since (ξB (mA − (1 + l) , 1) + ξA (mA − (1 + l) , 1)) ≤ 1, it follows that

W (mA, 1) ≤ (ξB (mA, 1) + ξA (mA, 1))wB < δr (1)wB = wB (1)

Analogously, we have that W (1,mB) < wA (1).

Lemma A.3 (Base Case).

W (mA, 2) < max {wA (mA) , wB (2)} for all mA ≥ 2

and
W (2,mB) < max {wA (2) , wB (mB)} for all mB ≥ 2

Proof of Lemma A.3. First, note that

W (2, 2) ≤ ξ (4) max {wB (1) , wA (1)}

< δ

(
2

3− δ

)
max {wB (1) , wA (1)}

< δr(2) max {wB (1) , wA (1)} = max {wB (2) , wA (2)}
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Next consider W (mA, 2). By successive application of Lemma A.1

W (mA, 2) ≤ max {δr (mA)W (mA − 1, 2) , δW (mA, 1) r (2)}

≤ max

δ2
1∏

j=0

r (mA − j)W (mA − 2, 2) , δ2
0∏

j=0

r (mA − j)W (mA − 1, 1) r (2) , δW (mA, 1) r (2)


....

≤ max

δmA

mA−2∏
j=0

r (mA − j)W (1, 2) , max
k≤mA−2

δk+1
k−1∏
j=0

r (mA − j)W (mA − k, 1) r (2)

 , δW (mA, 1) r (2)


Now, we have shown in Lemma A.2 that W (mA, 1) < wB (1) for all mA ≥ 1, and W (1,mB) <
wA (1) for all mB ≥ 1. Using these results in the RHS of the expression above, we get

W (mA, 2) < max

{
δmA

mA−2∏
j=0

r (mA − j)wA(1), maxk≤mA−2

{
δk+1∏k−1

j=0 r (mA − j)wB(1)
}
r (2) , δr (2)wB(1)

}

Using (12) we get that

max
k≤mA−2

δk+1
k−1∏
j=0

r (mA − j)wB(1)

 = δ2r (mA)wB(1),

so

W (mA, 2) < max

δmA

mA−2∏
j=0

r (mA − j)wA(1), δr (2)wB(1)

 .

Therefore, using equation (12) and Lemma A.2 one more time, we have

W (mA, 2) < max {wA(mA), wB(2)} .
By the same logic, W (2,mB) < max {wB(mB), wA(2)}.

Lemma A.4 (Induction Step). Consider any state ~m ≥ (3, 3). If

(25) W
(
~mB
)
≤ max {wA (mA) , wB (mB − 1)}

and

(26) W
(
~mA
)
≤ max {wA (mA − 1) , wB (mB)}

then

(27) W (~m) ≤ max {wA (mA) , wB (mB)}

Proof of Lemma A.4. By Lemma A.1,

(28) W (~m) ≤ max
{
δr (mA)W

(
~mA
)
, δr (mB)W

(
~mB
)}

Using (25) and (26), and then noting that wj(mj) = δr (mj)wj (mj − 1) for j = A,B, and
substituting, (28) becomes
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W (~m) ≤ max

 max {wA (mA) , δr (mA)wB (mB)} ,

max {δr (mB)wA (mA) , wB (mB)}

 ≤ max {wA (mA) , wB (mB)}

Proof of Theorem 4.5. The first statement follows as a corollary of Theorem 4.3. Now consider
the second part. From expression (3), we have

(29) W (q, q) =

q−2∑
l=0

(
q−1+l∏
k=0

C(2q−k)

)
×
(
q− 1+l

l

)
×
[
(δπA)q(δπB)lwA + (δπB)q(δπA)lwB

]
On the other hand, with a single alternative, w(q) = (

∏q
m=1 r(m)) δqw. Now, since r(k) =

n+2k−3
n+2k−(1+2δ) by definition and n = 2q − 1, we have r(k) = C(q + k). Thus

(30) w(q) =

(
q∏

k=1

C(q + k)

)
δqw =

(
q−1∏
k=0

C(2q − k)

)
δqw

Suppose without loss of generality that wA > wB. We want to show that for sufficiently large q
the equilibrium payoff of an uncommitted follower in the game with a single alternative yielding
value wB is larger than his (competitive) equilibrium payoff in the game with two alternatives
yielding value wA and wB. Suppose not. Then making w = wB in (30), and dividing (29) by
(30),

U(q) ≡
q−2∑
l=0

q−1+l∏
k=q

C(2q−k)

× (q− 1+l

l

)
×
[
(πA)q(δπB)l + (πB)q(δπA)l

(
wB
wA

)]
≥ wB
wA

Now, since δ ≤ 1,
∏q−1+l
k=q C (2q − k) ≤ 1, and wB/wA < 1, for any integer q, we have

U(q) <
∑
j=A,B

(πj)
q
q−2∑
l=0

Γ (q + l)

Γ (q)

(δπj)
l

l!
≡ U(q)

where for any integer k, we define Γ (k) ≡ (k − 1)!. Now define the function

F (a, b, c, z) ≡
∞∑
l=0

(
a+l
l

)(
b+l
l

)(
c+l
l

) zl,

and note that we can write

U(q) =
∑
j=A,B

(πj)
q

F (q, 1, 1, δπ−j)−
∞∑

l=q−1

Γ (q + l)

Γ (q)

(δπ−j)
l

l!



=
∑
j=A,B


(

πj
1− δπ−j

)q
− (πj)

q
∞∑

l=q−1

Γ (q + l)

Γ (q)

(δπ−j)
l

l!

 .

(31)
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where the equality follows from the fact that F (a, b, b, z) = (1− z)−a (see Property 15.1.8 for
hypergeometric functions in Abramowitz and Stegun (2012; p.556)). Noting that(

πj
1− δπ−j

)
=

(
1− π−j
1− δπ−j

)
< 1

as long as δ < 1, it follows that for any ε > 0 there is a Q such that if q > Q, then U(q) < ε.
Thus, for any πB/πA, there is a Q such that U(q) < πB/πA whenever q > Q.

Proof of Theorem 4.6. Let L be the set of leaders with |L| ≥ 2. Let γj (~m) be the probability
that leader j ∈ L makes an offer in state ~m, αj (~m) be the probability that an uncommitted
follower accepts an offer from leader j ∈ L in state ~m, and µj (~m) ≡ γj (~m)αj (~m). Then

W (~m) =

(
1

n−
∑

j∈L
(
n+1
2 −mj

)) δW (~m)(32)

+

(
1− 1

n−
∑

j∈L
(
n+1
2 −mj

))∑
j∈L

πj

(
µj (~m) δW

(
~mj
)

+ (1− µj) δW (~m)

)

Let M+ ≡ {~m : n −
∑

j∈L
(
n+1
2 −mj

)
> minj∈Lmj} denote the set of states in which not all

uncommitted followers are critical. For j ∈ L and all ~m ∈M+ define

ξj (~m) ≡ δπjµj (~m)

n−
∑

j∈L(
n+1
2
−mj)

n−1−
∑

j∈L(
n+1
2
−mj)

(1− δ) + δ
∑

j∈L πjµj (~m)

For all j ∈ L and ~m ∈M+ we can write (32) as

(33) W (~m) =
∑
j∈L

ξj (~m)W
(
~mj
)

Note in particular that the recursion (33) implies that if wj > 0 for all j ∈ L (as we are assuming
here), then W (~m) ≥ 0 for all ~m ∈M+.

We need to show that W (~q) < maxj∈L {wj (q)}. The proof follows from three lemmas. Lemma
A.6 establishes the result for critical states ~m, in which at least one leader is exactly one step
away from winning, and shows an additional result for all boundary states which is used in
Lemma A.7. The proof for interior states is by induction. Lemma A.7 establishes the base
case, and Lemma A.8 the induction step. Iterative application of the induction step covers the
entire state space and establishes the result. We begin with Lemma A.5, which establishes an
intermediate result that is used in the proof of Lemmas A.6 and A.8.

Lemma A.5 (Bound). In any MPE of the game Γ(~m),

(34) W (~m) ≤ max
j∈L

{
δr (mj)W

(
~mj
)}
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Proof of Lemma A.5. Note that∑
j∈L

ξj (~m) ≤ δ
n−

∑
j∈L(

n+1
2
−mj)

n−1−
∑

j∈L(
n+1
2
−mj)

(1− δ) + δ

and since
δ

n−
∑

j∈L(
n+1
2
−mj)

n−1−
∑

j∈L(
n+1
2
−mj)

(1− δ) + δ
≤ δ n+ 2mk − 3

n+ 2mk − (1 + 2δ)
= δr (mk)

we have that for all k ∈ L
(35)

∑
j∈L

ξj (~m) ≤ δr (mk)

Therefore for all k ∈ L we have∑
j∈L

ξj (~m) max
j∈L

{
W
(
~mj
)}
≤ δr (mk) max

j∈L

{
W
(
~mj
)}

∑
j∈L

ξj (~m)W
(
~mj
)
≤ δmax

j∈L

{
r (mj)W

(
~mj
)}

Lemma A.6 (Boundaries). Let M∗ (j) = {~m : mj = 1 ≤ mk for k 6= j and k ∈ L} denote the
set of (critical) states in which leader j ∈ L is one step away from winning. Let ~m∗ (j) ∈M∗ (j)
be a generic element of this set and define |~m∗ (j)|h as the number of followers that leader
h = A,B, . . . needs to win. Then for all ~m∗ (j) ∈M∗ (j) we have

(36) W (~m∗ (j)) ≤ max
h∈L
{wh (|~m∗ (j)|h)}

and the inequality is strict if W (~m∗ (j)) > 0 is positive.

Proof of Lemma A.6. Without loss of generality, let’s focus on ~m∗ (A) ∈ M∗ (A). Note that if
there is another leader k such that |~m∗ (j)|k = 1, we have two leaders that need only one follower
to win. Therefore, we must have that there is only one remaining uncommitted follower and
W (~m∗ (A)) = 0, which trivially verifies (36).

Let’s focus then on the set of states M̂∗ (A) = {~m∗ (A) ∈M∗ (A) : mk ≥ 2 for k ∈ {L \A}} in
which A is the only leader that needs one supporter while the rest needs at least 2. Note that

for any ~m∗ (A) ∈ M̂∗ (A), (33) is equivalent to

W (~m∗ (A)) = ξA (~m∗ (A))wA +
∑

j∈{L|A}

ξj (~m∗ (A))W
(
~m∗ (A)j

)
If wA ≥W

(
~m∗ (A)k

)
for all j ∈ {L \A} we are done since

(37) W (~m∗ (A)) ≤
∑
j∈L

ξj (~m∗ (A))wA < δr (1)wA = wA (1)

Then assume that wA < W
(
~m∗ (A)k

)
for some k ∈ {L \A} so we have

W (~m∗ (A)) ≤
∑
j∈L

ξj (~m∗ (A))W
(
~m∗ (A)k

)
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Note that there is no h such that |~m∗ (A)h |h = 1 since this implies that |~m∗ (A)|h = 2, and there-

fore any trade leads to only one remaining uncommitted follower. This implies W (~m∗ (A)k) = 0,

which contradicts the assumption that wA < W (~m∗ (A)k). Therefore, we must have that

~m∗ (A)k ∈ M̂∗ (A).

Let’s focus then on the state ~m∗ (A)k. Using (33) we have

W
(
~m∗ (A)k

)
= ξA

(
~m∗ (A)k

)
wA +

∑
j∈{L\{A,k}}

ξj

(
~m∗ (A)k

)
W
(

[~m∗ (A)k]j
)

Again we have that if wA ≥W
(

[~m∗ (A)k]j
)

we are done, since

W
(
~m∗ (A)k

)
≤
∑
j∈L

ξj

(
~m∗ (A)k

)
wA < δr (1)wA = wA (1)

so we assume again that wA < W
(

[~m (A)k]k
′
)

for some k′ ∈ {L \A}, which implies that

W
(
~m∗ (A)k

)
≤
∑
j∈L

ξj

(
~m∗ (A)k

)
W
(

[~m∗ (A)k]k
′
)

and therefore

(38) W (~m∗ (A)) ≤

∑
j∈L

ξj (~m∗ (A))

×
∑
j∈L

ξj

(
~m∗ (A)k

)×W (
[~m∗ (A)k]k

′
)

Note that we can proceed in the same fashion until we reach a state in which another leader
needs only one follower or there are only two remaining followers. In the first case we have that
the value function is 0 because there is only one remaining uncommitted follower, so we focus
in the second case. Call this state ~m∗1 (A) (there are many paths in which this state could be
reached but only one path that maximizes it step by step) and note that

W (~m∗ (A)) ≤

∑
j∈L

ξj (~m∗ (A))

×
∑
j∈L

ξj

(
~m∗ (A)k

)×
∑
j∈L

ξj

(
[~m∗ (A)k]k

′
)×...×W (~m1 (A))

Note also that the fact that there are only two remaining followers implies that W
(
~m1 (A)j

)
= 0

so (33)

W (~m∗1 (A)) = ξA (~m∗1 (A))wA +
∑

j∈{L|A}

ξj (~m∗1 (A))W
(
~m∗1 (A)j

)
= ξA (~m∗1 (A))wA

and
W (~m∗1 (A)) = ξA (~m∗1 (A))wA < δr (1)wA = wA (1)

Therefore,

W (~m∗ (A)) <

∑
j∈L

ξj (~m∗ (A))

×
∑
j∈L

ξj

(
~m∗ (A)k

)×
∑
j∈L

ξj

(
[~m∗ (A)k]k

′
)× ...× wA (1)

< wA (1)
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Recall that |~m∗ (A)|A = 1 and it is trivial to see that

wA (|~m∗ (A)|A) ≤ max
j∈L

{
wj

(
|~m∗ (A)|j

)}
which gives (36).

Lemma A.7 (Base Case). Let

M∗∗ (j) = {~m : mj = 2 ≤ mk for k ∈ {L |j}}
be the set of states in which all leaders need at least 2 supporters to win and leader j ∈ L needs
exactly 2 supporters, then

(39) W (~m∗∗ (j)) < max
h∈L
{wh (|~m∗∗ (j)|h)}

Proof of Lemma A.7. Without loss of generaility assume that j = A and let L (~m∗∗ (A)) =
{h ∈ L : |~m∗∗ (A)|h = 2} be the set of leaders such that if trading they are one supporter away
from winning; note that A ∈ L (~m∗∗ (A)). Note that

W (~m∗∗ (A)) =
∑

k∈L(~m∗∗(A))

ξk (~m∗∗ (A))W
(
~m∗∗ (A)k

)
+

∑
k/∈L(~m∗∗(A))

ξk (~m∗∗ (A))W
(
~m∗∗ (A)k

)
If the state ~m∗∗ (A) involves only one remaining uncommitted follower we have thatW (~m∗∗ (A)) =
0, so we are done. Assume then that there are more than one uncommitted follower. If there is

some h ∈ L (~m∗∗ (j)) such that W
(
~m∗∗ (A)h

)
≥ max

k∈{L|h}

{
W
(
~m∗∗ (A)k

)}
, we have that

W (~m∗∗ (A)) ≤
∑
k∈L

ξk (~m∗∗ (A))W
(
~m∗∗ (A)h

)
Using that

∑
k∈L ξk (~m∗∗ (A)) < δr (|~m∗∗ (A)|k) for all k ∈ L we have that

W (~m∗∗ (A)) < δr (|~m∗∗ (A)|k)W
(
~m∗∗ (A)h

)
for all k ∈ L, and since

∣∣∣~m∗∗ (A)h
∣∣∣
h

= 1 (since h ∈ L (~m∗∗ (A))) and therefore ~m∗∗ (A)h ∈M∗ (h)

we can apply the previous Lemma to get

W (~m∗∗ (A)) < δr (|~m∗∗ (A)|k) max
l∈L

{
wl

(∣∣∣~m∗∗ (A)h
∣∣∣
l

)}
for all k ∈ L. Using now that

∣∣∣~m∗∗ (A)h
∣∣∣
l

= |~m∗∗ (A)|l for all l ∈ {L |h} and
∣∣∣~m∗∗ (A)h

∣∣∣
h

=

|~m∗∗ (A)|h − 1 we have

W (~m∗∗ (A)) < δr (|~m∗∗ (A)|k) max

{
max

l∈{L\h}
{wl (|~m∗∗ (A)|l)} , wh (|(~m∗∗ (A)− 1)|h)

}
≤ max

{
δr (|~m∗∗ (A)|k) max

l∈{L\h}
{wl (|~m∗∗ (A)|l)} , δr (|~m∗∗ (A)|k)wh (|(~m∗∗ (A)− 1)|h)

}
≤ max

{
max

l∈{L\h}
{wl (|~m∗∗ (A)|l)} , wh (|(~m∗∗ (A))|h)

}
=

{
max
l∈L
{wl (|~m∗∗ (A)|l)}

}
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If there is some h /∈ L (~m∗∗ (j)) such that W
(
~m∗∗ (A)h

)
≥ max

k∈{L\h}

{
W
(
~m∗∗ (A)k

)}
we have

that
W (~m∗∗ (A)) ≤ δr (|~m∗∗ (A)|k)W

(
~m∗∗ (A)h

)
and since ~m∗∗ (A)h ∈ M∗∗ (j) we have two options. Either there is only one remaining follower
in which case we are trivially done or there is more than one follower, in which case we can
repeat again the recursion until we reach (39).

Lemma A.8 (Induction Step). Consider any state ~m such that |~m|j ≥ 2 for all j ∈ L. If

(40) W
(
~mj
)
≤ max

{
max
h∈{L|j}

{wh (|~m|h)} , wj
(
|~m|j − 1

)}
for all j ∈ L, then

(41) W (~m) ≤ max
j∈L

{
wj

(
|~m|j

)}
Proof of Lemma A.8. By Lemma A.5,

(42) W (~m) ≤ max
j∈L

{
δr
(
|~m|j

)
W
(
~mj
)}

Using (40), and then noting that wj(|~m|j) = δr
(
|~m|j

)
wj

(
|~m|j − 1

)
for j ∈ L, and substituting,

(42) becomes

W (~m) ≤ max

{
max

h∈{L\j}

{
δr
(
|~m|j

)
wh (|~m|h)

}
, wj

(
|~m|j

)}
which implies the result.

Proof of Proposition 4.7. Let

(43) Π∗ (m) ≡ v +

[
m∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
w for m = 1, . . . , q

In the proof of Proposition 3.1 we showed that the condition (7) for non-negative surplus in
state m in a FTE is s(m) = δm−1 (1− δ) Π∗(m) ≥ 0⇔ Π∗(m) ≥ 0. Note that when w < 0, for
any m,m′ ≤ q s.t. m < m′, Π∗ (m′) ≥ 0 implies

v ≥

[
m′∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
(−w) >

[
m∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
(−w),

so that Π∗ (m) > Π∗ (m′) ≥ 0. Thus, in particular, Π∗ (q) ≥ 0 ⇒ Π∗ (m) > 0 for all m < q. It
follows that Π∗(q) ≥ 0 is a necessary and sufficient condition for existence of a FTE.

To consider all equilibria, we split the analysis in two cases: (1) Π∗(q) ≥ 0, and (2) Π∗(q) < 0.

Case 1 : Π∗(q) ≥ 0. We focus on two subcases: Π∗(q − 1) + w > 0 and Π∗(q − 1) + w ≤ 0. In
the first subcase, if the proposed equilibrium were to involve no trade with positive probability
at some state m, then L would have a profitable deviation increasing the probability of trade.
Hence, the only equilibrium is a FTE. In the second case, if there is no trade with positive
probability at some state m, deviations will not always be profitable. In this case we are going
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to show that if there is mixing at some state, there is some other state with no trade with
probability 1.

Case 1.1 : Π∗(q − 1) +w > 0. To show uniqueness we need to rule out equilibria in which there
is no trade with positive probability in some state. First note that since Π∗(1) > 0, in every
MPE we must have trade w.p. one at m = 1, for otherwise there is a sufficiently small ε > 0
such that the leader could gain by raising her offer by ε > 0, and having it be accepted for sure.

Now suppose that there is a MPE in which, for some state m∗ ∈ {2, . . . , q − 1}, we have (i)
γmαm = 1 for all m < m∗, and (ii) 0 < γm∗αm∗ < 1 (we study the case m∗ = q separately).

Because of mixing at m∗, we must have s(m∗) = 0, and thus

(44) v(m∗) = v(m∗ − 1) + wout(m
∗ − 1)− w(m∗).

At the same time, the value for the leader is v(m∗) = γm∗αm∗ [δv(m∗ − 1) − p(m∗)] + (1 −
γm∗αm∗)δv(m∗). Solving for v(m∗) and substituting p(m∗) = δ

(
w(m∗)− wout(m∗ − 1)

)
, we

have

(45) v(m∗) =
γm∗αm∗δ

1− δ(1− γm∗αm∗)
(
v(m∗ − 1) + wout(m∗ − 1)− w(m∗)

)
From (44) and (45), it follows that v(m∗) = 0.

For L to make an offer in state m∗ + 1, we need δv(m∗) − p(m∗ + 1) ≥ δv(m∗ + 1). Given
v(m∗) = 0, this becomes wout(m

∗) ≥ w(m∗+ 1), and by assumption on the equilibrium (trading
with certainty in all m < m∗ and mixing at m∗), this condition is equivalent to

δγm∗αm∗

1− δ(1− γm∗αm∗)
wout(m

∗ − 1) ≥ Hm∗+1Hm∗δ
2w(m∗ − 1)

γm∗αm∗

1− δ(1− γm∗αm∗)
δm
∗−1w ≥ Hm∗+1Hm∗δ

(
m∗−1∏
k=1

r(k)

)
δm
∗−1w

γm∗αm∗

1− δ(1− γm∗αm∗)
≤ Hm∗+1Hm∗δ

(
m∗−1∏
k=1

r(k)

)
γm∗αm∗

1− δ(1− γm∗αm∗)
≤ Hm∗+1

r(m∗)γm∗αm∗

1− r(m∗)δ(1− γm∗αm∗)
δ

(
m∗−1∏
k=1

r(k)

)
If Hm∗+1 = 0 then γm∗αm∗ = 0 and if Hm∗+1 6= 0 then we must have that

γm∗αm∗

1− δ(1− γm∗αm∗)
≤ r(m∗)γm∗αm∗

1− r(m∗)δ(1− γm∗αm∗)
but since r(m∗) < 1 this is only possible if γm∗αm∗ = 0, a contradiction with our initial assump-
tion that 0 < γm∗αm∗ < 1. It follows that in any MPE that is not a FTE there is a m∗ > 1 such
that γm∗αm∗ = 0, and for all m < m∗ the equilibrium involves trade with certainty. Because
trade stops at m∗ > 1 we have

wout(m∗) = w(m∗) = v(m∗) = 0

Consider then this proposed equilibrium. Because γm∗αm∗ = 0, either the leader does not make
an offer at m∗, so that γm∗ = 0, or the follower does not accept the leader’s offer, αm∗ = 0.
Let’s focus first in case in which the leader does not make the equilibrium offer: γm∗ = 0. Note
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that an offer p̂ = −δwout(m∗ − 1) + ε for ε > 0 is always accepted. By deviating and making
this offer, the leader gets a payoff δv(m∗ − 1)− p̂. This is a profitable deviation if

δv(m∗ − 1)− p̂ > δv(m∗) = 0

δ
(
v(m∗ − 1) + wout(m∗ − 1)

)
> ε

δm
∗ × (Π∗(m∗ − 1) + w) > ε

where the last line follows since there is trade in every m < m∗. Recall that Π∗(m) is decreasing
in m when w < 0, so if Π∗(q − 1) + w ≥ 0 we must have that Π∗(m∗ − 1) + w > 0 and
therefore there is some ε > 0 that makes the offer p̂ preferable for L than not making an offer
at m∗ < q. Similar arguments show if there is some m∗ > 1 such that αm∗ = 0, when the leader
offers p(m∗) = δ

(
w(m∗)− wout(m∗ − 1)

)
, there is a profitable deviation by increasing the offer

slightly.

To finish this part of the proof let’s focus in the case where m∗ = q. If 0 < γqαq < 1 (there is
randomization) we must have s(q) = v(q) = 0 and using (11) we get

v(q − 1) + wout(q − 1) = w(q) = Hqδw(q − 1)

Π∗(q − 1) + w = Hqδ

(
q−1∏
k=1

r(k)

)
w

but this is not possible since Π∗(q−1)+w > 0. Then, we need to rule out equilibria with γqαq = 0
but with trade with probability 1 at all m < q. Since there is no trade at q, v(q) = w(q) = 0, but
in this case L has a profitable deviation. Let L make the following offer p̂ = −δwout(q − 1) + ε
for some ε > 0 which is accepted with probability 1. Thus, L obtains

δv(q − 1)− p̂ = δv(q − 1) + δwout(q − 1)− ε
and the leader is willing to make this offer with probability 1 if

δv(q − 1) + δwout(q − 1)− ε > δv(q)

δv(q − 1) + δwout(q − 1) > ε

δ (Π∗(q − 1) + w) > ε

and again if Π∗(q − 1) + w > 0, the deviation is profitable

Case 1.2 : Π∗(q − 1) + w ≤ 0 ≤ Π∗(q). Using the same arguments as in Case 1.1 we can rule
out any mixed strategy equilibria except for the possibility that γm∗αm∗ = 0 for some m∗ > 1.
Here s(m∗) = v(m∗) = w(m∗) = wout(m∗) = 0, and then w(m) = wout(m) = v(m) = 0 for all
m > m∗.

Case 2 : Π∗(q) < 0. In this case, as we’ve shown before, there is no FTE. We separate the
analysis in two parts: (1) 0 < Π∗(1) and (2) Π∗(1) ≤ 0. In the first case, we have that there is
trade for low states with probability 1 and potential mixing for high states. The second case is
more straightforward since the only class of equilibria that is feasible involves mixing in every
state. In both cases we are going to show that, if there is mixing, there is some state m ≤ q in
which there is no trade with probability 1.
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Case 2.1 : Π∗(q) < 0 < Π∗(1). We are going to show that the only other class of equilibria
involves no trade at some m∗ ≥ 1. If there is no trade at m = 1 we are done, so assume that
there is trade at m = 1.

Suppose first that Π∗(q−1) ≤ 0. Since Π∗ (m) is decreasing in m, there is some m∗ < q such that
Π∗ (m) < 0 for all m ≥ m∗ but Π∗ (m) > 0 for all m < m∗. Since s(m) = δm−1 (1− δ) Π∗(m) ≥ 0
for all m < m∗, in any equilibrium with trade at m = 1 we must have γm = αm = 1 for
all m < m∗. We will show that in equilibrium there is no trade at m∗. Assume towards a
contradiction that there is trade with positive probability at m∗. Now, since Π∗ (m∗) < 0 by
hypothesis, it has to be that γm∗αm∗ < 1. Thus s(m∗) = 0, which with (11) implies that
v(m∗) = 0 and wout(m

∗ − 1) = w(m∗). The same logic gives that for all m > m∗:

(46) wout(m− 1) = w(m)

Note that using the recursive representation of the value functions for m∗ + 1 we have(
γm∗αm∗δ

1− δ(1− γm∗αm∗)

)
wout (m∗ − 1) = δ2Hm∗+1Hm∗w (m∗ − 1)

and since for all m < m∗ we have trade with probability 1 in every meeting we can use (12) and
(13) to get (

γm∗αm∗

1− δ(1− γm∗αm∗)

)
= δHm∗+1Hm∗

[
m∗−1∏
k=1

r(k)

]

Using

Hm ≡
r (m) γmαm

1− r (m) δ(1− γmαm)
we have

(47)
γm∗αm∗

1− δ(1− γm∗αm∗)
=

γm∗+1αm∗+1

1− r (m∗ + 1) δ(1− γm∗+1αm∗+1)

γm∗αm∗

1− r (m∗) δ(1− γm∗αm∗)
δ

[
m∗∏
k=1

r(k)

]

Note that
γm∗+1αm∗+1

1− r (m∗ + 1) δ(1− γm∗+1αm∗+1)
≤ 1

so we must have

γm∗αm∗

1− δ(1− γm∗αm∗)
≤ γm∗αm∗

1− r (m∗) δ(1− γm∗αm∗)
δ

[
m∗∏
k=1

r(k)

]
and if γm∗αm∗ > 0, then we have

1− r (m∗)

1− δ(1− γm∗αm∗)
+ r (m∗) ≤ δ

[
m∗∏
k=1

r(k)

]
and since r(k) < 1 we must have

1− r (m∗)

1− δ(1− γm∗αm∗)
+ r (m∗) < r (m∗)

1− r (m∗)

1− δ(1− γm∗αm∗)
< 0
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which is false so γm∗αm∗ = 0.

Next suppose instead that Π∗(q− 1) > 0. In this case Π∗ (m) > 0 for all m < q, and thus
m∗ = q. Recall that for all m < q we have that there is trade in every meeting. Assume
towards a contradiction that there is trade with positive probability at q. Then s(q) = 0
and by (11) we have that v(q) = 0. Therefore, we must have

(48) w(q) = δq−1

(
v +

[
q−1∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
w + w

)
Recalling that

w(q) = Hqδw (q − 1)

and using (12) and the expression for Hq we have

w(q) =
r(q)γqαq

1− r(q)δ(1− γqαq)
δ

[
q−1∏
k=1

r(k)

]
δq−1w

Substituting in (48) we have

v +

[
q∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
w = − 1− δr(q)

1− r(q)δ(1− γqαq)
(1− γqαq)δ

[
q∏

k=1

r(k)

]
w

Note that the left hand side is equivalent to Π∗(q) and is by assumption negative but
since w < 0, the right hand side is positive, which is a contradiction. Therefore there is
no trade at q.

Case 2.2 : Π∗(1) ≤ 0. Note that Π∗(1) ≤ 0 implies that v + w < 0, so there is always an
equilibrium with no trade at any m ≤ q. Since w < 0, implies that Π∗(m) is decreasing
we have that Π∗(m) < 0 for all m > 1 and the only other class of equilibria involves
randomization at anym > 1; i.e γmαm < 1. Again following Case 2.1 we have that the only
other class of equilibria involves no trade at some m∗ ≥ 1 and therefore v(q) = w(q) = 0.
This concludes the proof.

Proposition A.9. Assume that z ≤ 0 < w, and let

Π∗z(m) ≡ v +m (z − w) +

[
m∑
l=1

(
1− δ

(
l∏

k=1

r(k)

))]
w

(1) If Π∗z(q) ≥ 0 the unique MPE of the game is a FTE.
(2) If Π∗z(q−1) ≥ 0 > Π∗z(q), MPE are either “no trading equilibria” (NTE) or entail no trading
with positive probability at q, and thus imply v(q) = 0. Thus, ∀κ > 0, if the leader has to pay
an entry cost κ > 0, she doesn’t enter.
(3) If 0 ≥ Π∗z(q − 1) ≥ Π∗z(q), all MPE are NTE.

Proof. The proof is similar to that of Proposition 4.7 (click here for details).

https://dl.dropboxusercontent.com/u/954402/zMonopoly.pdf
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7. Online Appendix B: Extensions

7.1. Unobservable Trades. In our model the state (m or ~m in monopoly and competition)
is common knowledge. This has a first order effect on equilibrium outcomes. In any meeting
between a leader and a follower, the follower’s bargaining power is derived from his outside
option. And what gives value to the outside option are free riding opportunities. Common
knowledge about the state matters because the state affects the value of free riding opportunities,
and thus agents’ bargaining power.

The effect of the state on agents’ bargaining power is potentially absent when past trades are
not observable, and it is absent in a pooling equilibrium where the leaders’ offer convey no
information about the state. It follows that introducing non-observability of trades can change
equilibrium payoffs (and outcomes) significantly. In fact, as we show below, non-observability
of trades increases agents’ bargaining power. But this is not the end of the story. The point
is that non-observability of trades affects agents’ bargaining power both in the monopoly and
competitive games. Thus, the key for the comparison of followers’ welfare under monopoly and
competition is whether non-observability of trades affects agents’ bargaining power differentially
in competition and monopoly in a way that would upend the results with full observability.

To study this question, we analyze the monopoly and competitive games under the assumption
that trades are not observed by non-participants, following Noe and Wang (2004).24 Following
our previous discussion, we focus on pooling FTE, in which leaders make the same offer to all
followers, independently of the state. We also assume, as in Noe and Wang (2004), that agents
don’t learn from calendar time (agents don’t update their belief about the state based on the
period in which they are approached).

The plan is the following. We begin with some general results in the monopoly game. We show
that followers’ equilibrium payoffs in the game with non-observable trades is higher than in the
benchmark model with observability. We then move to the competitive game and show that
here too, non-observability affects equilibrium payoffs. We wrap up the analysis of both games
by characterizing payoffs and proving existence of the pooling FTE in a three agent example.
We finish by comparing followers’ equilibrium payoffs in both games.

Our results offer two main conclusions. First, equilibrium payoffs of the non-observability games
are indeed different than in the benchmark game. Second, still in this case, monopoly is preferred
to competition. In a nutshell, non-observability of the state does not alter the fact that free
riding opportunities are larger under monopoly than under competition.

(i) Monopolistic Leadership with Non-Observability. Let ρ(·) denote followers’ beliefs (i.e., ρ(m)
indicates the probability that a follower attaches to the leader being m uncommitted followers
short of winning.) In a pooling FTE, ρ(m) = 1/n for all m.25

24The setup of Noe and Wang (2004) differs from ours in two fundamental aspects. First – in the main
part of the paper (with n agents) – Noe and Wang consider what is effectively a unanimity rule: a buyer
transacts with n sellers, and gets a payoff of one if she buys all n goods, zero otherwise (the goods are
perfect complements). Since unanimity gives veto power to each agent, this effectively eliminates free
riding (recall that our result holds for all non-unanimous rules). Second, sellers only care about the money
they obtain for selling the good. Hence they are in a pure private values case with no externalities.
25As we will see below, this is not the case in the competitive game.
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Let Eŵout denote a follower’s expected continuation value of accepting an offer by the leader,
and Eŵ a follower’s expected continuation value of rejecting this offer. The optimal relevant
offer p̂ by the leader in any state m = 1, 2, . . . , (n+ 1)/2 satisfies

(49) δEŵout + p̂ = δEŵ,

Let ŵout(m) denote the continuation value of a committed follower in state m, as computed
by an outside observer who knows m (i.e., computed under the assumption that the follower
does not know the state). Similarly, let ŵ(m) denote the continuation value of an uncommitted
follower in state m, also as computed by an outside observer who knows m. Finally, let v̂(m) be
the continuation value of the leader in state m. Note that since the leader observes past trades,
v̂(m) is computed assuming that the leader knows the state.

The expected continuation value of a follower who accepts an offer is given by

Eŵout ≡

n+1
2∑

m=1

 ρ(m)∑n+1
2

j=1 ρ(j)

 ŵout(m− 1)(50)

This expression incorporates the fact that having traded, the follower knows that he is one of
the n+1

2 followers to trade with the leader (i.e., that m = 1, 2, . . . , (m+1)/2). Note that ŵout(m)
is equivalent to wout(m) in the full information case, so

Eŵout =

n+1
2∑

m=1

(
2

n+ 1

)
δm−1w =

(
2

n+ 1

)(
1− δ

n+1
2

1− δ

)
w,(51)

where we have used the fact that there is trade after every meeting.

Now consider the expected continuation value of a follower who rejects an offer, Eŵ. By (49),
in any state m the leader offers a transfer that gives the follower a continuation value equal to
the discounted continuation value of rejecting the offer, δEŵ, so

(52) ŵ(m) =

(
2

n+ 2m− 1

)
δEŵ +

(
n+ 2m− 3

n+ 2m− 1

)
δŵ(m− 1)

Solving this recursion,26 we get

(53) ŵ(m) =

(
2

n+ 2m− 1

)[(
δ

1− δ

)
(1− δm)Eŵ +

(
n− 1

2

)
δmw

]
26Let β(m) = 2

n+2m−1 denote the probability that a follower is chosen to face the leader, and write (52)

as ŵ(m) = β(m)δEŵ + (1− β(m)) δŵ(m − 1). It is easy to see that 1−β(m)
1−δβ(m) = r(m) as defined in that

text and that 1−β(m)
β(m) = 1

β(m−1) . Therefore, defining x(m) ≡ ŵ(m)/β(m) we have that the difference

equation that describes the value function ŵ(m) is given by x(m) = δEŵ + δx(m− 1). This is a linear,
autonomous, first order difference equation, with general solution x(m) = δ

1−δEŵ + Cδm and boundary

condition given by x(1) = δEŵ + n−1
2 δw. Substituting,

x(m) =

(
δ

1− δ

)
(1− δm)Eŵ +

(
n− 1

2

)
δmw,

and using the definition of x(m), we obtain (53).
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The expected continuation value for a follower of rejecting the offer is given by

Eŵ =
1

n

n+1
2∑

m=1

ŵ(m) +
n− 1

2n
w(54)

where we used ρ(m) = 1/n. The second part is the probability of not meeting the leader and
successfully free riding on all other followers. Substituting (53) in (54), we obtain

Eŵ =
1 +

∑n+1
2

m=1

(
2δm

n+2m−1

)
n− δ

1−δ
∑n+1

2
m=1

(
2(1−δm)
n+2m−1

) (n− 1

2

)
w(55)

which can be used to compute ŵ(m) substituting in (53).
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Figure B.1. Followers’ equilibrium payoff with non-observable trades,
ŵ(m), and in the benchmark model, w(m) (δ = 0.85, n = 49, w = 100
and v = 10).

Figure B.1 plots ŵ(m) together with the followers’ payoff in the benchmark model, for δ = 0.85,
n = 49, w = 100 and v = 10. Consistent with your intuition, the plot shows that non-
observability of trades raises followers’ value.

(ii) Existence and Characterization of Pooling FTE with 3 followers [Monopoly]. With n = 3,
(55), (51) and (53) become

Eŵ =

(
6 + δ(3 + 2δ)

18− δ(5 + 2δ)

)
w, Eŵout =

(
1 + δ

2

)
w

and

ŵ(2) =

(
2 + 9δ

18− δ(5 + 2δ)

)
δw
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Up to this point, we have proceeded under the assumption that a Pooling FTE exists. We verify
this here. Note that the leader is willing to make an offer in state m as long as

(56) δv̂(m− 1)− p̂ ≥ δv̂(m).

An equilibrium with trade in every state requires that (56) holds in each state m = 1, 2. In
order to calculate the expression for (56) we have that the value function for the leader is

v̂(m) = δv̂(m− 1)− p̂,
where p̂ = δ[Eŵ − Eŵout] can be computed from (51) and (55). Again this is a linear, first
order, autonomous, difference equation with complete solution given by:

v̂(m) = δmv − 1− δm

1− δ
p̂

and therefore (56) is equivalent to

(57) p̂ ≤ δm(1− δ)
(1− δm)

v

Substituting from the expressions for Eŵ and Eŵout above, we have

p̂ =

(
6 + δ(3 + 2δ)

18− δ(5 + 2δ)
− 1

2
(1 + δ)

)
w =

1

2

(
11δ2 + 2δ3 − 7δ − 6

18− δ(5 + 2δ)

)
w

Note that f(δ) = 11δ2 + 2δ3 − 7δ − 6 is convex, decreasing for δ = 0 and f(0) = f(1) = 0.
Therefore, p̂ < 0. Since v > 0, condition (56) holds for m = 1, 2 and there is a pooling FTE in
the three player case under monopoly.

(iii) Competitive Leadership with Non-Observability. Let EŴ out
` denote a follower’s expected

continuation value of accepting an offer by leader ` = A,B, and EŴ a follower’s expected
continuation value of rejecting this offer. An optimal relevant offer by ` = A,B in state ~m
verifies

(58) δEŴ out
` + p̂` = δEŴ .

The expectations

(59) EŴ out
` =

n+1
2∑

mA=1

n+1
2∑

mB=1

ρ(~m)Ŵ out(~m`), EŴ =

n+1
2∑

mA=1

n+1
2∑

mB=1

ρ(~m)Ŵ (~m)

are computed with the followers’ beliefs ρ. Note that even in a FTE, in the competitive game
beliefs over states are not uniform. Since ρ(~m) = Pr(~m | approached kth) Pr(approached kth)
and Pr(approached kth) = 1/n, then27

ρ(~m) =
k!

n

(πA)(
n+1
2
−mA)(πB)(k+mA−n+1

2 )

(n+1
2 −mA)!

(
k +mA − n+1

2

)
!

27Note that in any state ~m in which follower i is approached in order k we have mA +mB = n+ 1− k,
and therefore mB = n+ 1− k −mA and n+1

2 −mB = k +mA − n+1
2 .
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Note that in a FTE Ŵ out (~m) is equivalent to W out (~m) as in the benchmark model with observ-

able meetings, which pins down EŴ out
` . Now consider EŴ . First, note that Ŵ (1, 1) = δEŴ .

For the boundary states in which mA = 1 and mB ≥ 2 (a symmetric expression holds for (mA, 1),
with mA ≥ 2), we have

Ŵ (1,mB) =
δEŴ

mB
+
mB − 1

mB

(
πAδwA + πBδŴ (1,mB − 1)

)
for mB ≥ 2

Solving recursively,

(60) Ŵ (1,mB) =
δEŴ (~m)

mB

mB−1∑
j=0

(δπB)j +
δπAwA
mB

mB−2∑
j=0

(mB − j − 1)(δπB)j ,

so that all boundary values again depend on EŴ (~m). Note moreover that for all ~m ≥ (2, 2) we
have

Ŵ (~m) =β′ (~m) δEŴ (~m) +
(
1− β′ (~m)

) (
πAδŴ (~mA) + πBδŴ (~mB)

)
(61)

Thus, all values again depend on EŴ (~m). This observation highlights the effect of the non-
observability of trades: when the offers are not contingent on the state the leader cannot extract
as much surplus from critical followers, who in equilibrium are unaware of their position. This
effect is then transmitted recursively to values at the beginning of the game.

(iv) Existence and Characterization of Pooling FTE in a 3-Follower Example [Competition]. To
simplify computations, we assume that wA = wB = w, πA = πB = 1/2, and vA = vB = 0. With
n = 3, and given our simplifying assumptions, (60) is

Ŵ (1, 2) = Ŵ (2, 1) =
δEŴ (~m)

2

(
1 +

δ

2

)
+
δw

4

Using (61) we get

Ŵ (2, 2) =
1

3
δEŴ (~m) +

2

3
δŴ (1, 2) =

1

3
δ

(
EŴ (~m)

(
1 + δ +

δ2

2

)
+
δw

2

)
,

and substituting in (59)

EŴ (~m) =
δ

3

[
EŴ (~m)×

(
4

3
+

7δ

12
+
δ2

6

)
+ w

(
1

4
+
δ

6

)]
Therefore,
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Ŵ (2, 2) =
1

6

(
42− 6δ + δ3

36− δ (16 + 7δ + 2δ2)

)
δ2w

and

EŴ =

(
3 + 2δ

36− δ (16 + 7δ + 2δ2)

)
δw

We now establish existence of this equilibrium. Leader ` is willing to make an offer in state m
iff δV̂ `(~m`)− p̂` ≥ δV̂ `(~m). Note that under a FTE, leader `’s value function is described by

V̂ `(~m) = π`

(
δV̂ `(~m`)− p̂`

)
+ πjδV̂

`(~mj)

and thus ` is willing to make an offer in state m iff

(62) δV̂ `(~m`)− p̂` ≥
δπj

1− δπ`
δV̂ `(~mj)

where p̂` = δ[EŴ − EŴ out
` ].

For existence of a pooling FTE we need (62) to hold for all ~m, which boils down to

(63) δV̂ A(~mA)− p̂A ≥
δ

2− δ
δV̂ A(~mB)

Using that

EŴ out(~mA) =
3 + δ

6
δw

we have

p̂A = δ

(
3 + 2δ

36− δ (16 + 7δ + 2δ2)
− 3 + δ

6

)
δw < 0

Next, note that

V̂ A(1, 1) =
(δvA − p̂A)

2
, V̂ A(1, 2) =

(δvA − p̂A) + δV̂ A(1, 1)

2
,

V̂ A(2, 1) =

(
δV̂ A(1, 1)− p̂A

)
2

, and V̂ A(2, 2) =

(
δV̂ A(1, 2)− p̂A

)
+ δV̂ A(2, 1)

2

Substituting, and noting that p̂A ≤ 0, gives that (63) holds for all states ~m 6= (2, 2). For
~m = (2, 2), condition (63) is equivalent to

δ2

2
vA +

δ(1− δ)
2− δ

(
δ2

2
vA −

(
1 +

δ

2

)
p̂A

)
≥ p̂A

and since p̂A ≤ 0, condition (63) also holds for ~m = (2, 2).
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(v) Comparison of Followers’ Equilibrium Payoffs. We are now ready to compare followers’
equilibrium payoffs in both games. As in part 4 above, in the competitive game we assume that
wA = wB = w, πA = πB = 1/2, and vA = vB = 0.

There are two alternative measures that we can consider: (i) the value of the game for the first

follower to trade with the leader/s: Ŵ (2, 2) and ŵ(2), and (ii) the expected value of the game

EŴ and Eŵ. Using the first measure we have that single leadership is preferred to competition
if

42− 6δ + δ3

36− δ (16 + 7δ + 2δ2)
δ <

12 + 54δ

18− δ(5 + 2δ)
which reduces to

−6δ
(
230 + 176δ + 67δ2 + 15δ3

)
< 432 + δ2(5 + 2δ)

(
42− 6δ + δ3

)
which is always true.

On the other hand, the comparison in expectation favors monopoly iff

3 + 2δ

36− δ (16 + 7δ + 2δ2)
δw <

6 + δ(3 + 2δ)

18− δ(5 + 2δ)
× w

which reduces to

−(3 + 2δ)
(
18 + 7δ + 2δ2

)
(1− δ)δ < 6

[
11 + (1− δ)

(
25 + 9δ + 2δ2

)]
which again is true.
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7.2. Direct Competition. In our model we assumed a sequential contracting setup, in which
leaders and followers make deals in bilateral meetings. An important consequence of this as-
sumption is that competition is “indirect” in the sense that competition affects trades through
its effect on followers’ outside option.28

Here we introduce the possibility of direct competition; i.e., that both leaders make simultaneous
offers to the followers. To do this we consider a version of our game in which the follower who
is selected to negotiate in state ~m meets with leader j = A,B with probability πj = π > 0,
and meets with both leaders with probability πAB = 1− 2π > 0. This spans the level of direct
competition from a situation in which direct competition is unlikely to a case in which it is
pervasive. As we will show, our results are quite robust to the presence of direct competition,
even for large πAB when there are no frictions (for δ close to one).

Introducing direct competition requires that we expand the state space to include the set of
principals that can make an offer to the follower at each meeting. Thus we let the negotiation
state be η ∈ {A,B,AB}, where η denotes the set of principals that can make an offer to the
follower on a meeting at a step state ~m. The state is then s = (~m, η), and the value functions
W (~m, η) and V (~m, η).

The analysis of the game with direct competition introduces additional technical challenges. To
attack this problem, we resort to a combination of analytical results and numerical analysis. In
particular, we first characterize equilibrium payoffs recursively, expressing equilibrium payoffs
in step states ~m as a function of quantities in forward step states (~mA, ~mB), imposing only the
restriction that strategies are weakly undominated given continuation values.29 (Click here to
see the details of the derivation of the analytical results.) We then use these results to compare
equilibrium payoffs under monopoly and competition numerically, for a variety of parameter
values.

The gist of the effect of direct competition can be grasped by comparing optimal relevant offers
in competitive and non-competitive negotiation states. In a noncompetitive negotiation state,
η = A,B, an optimal relevant offer by leader j satisfies

pj(~m, j) = −δ[W (~mj)−W (~m)],

where δ[W (~mj)−W (~m)] is the follower’s discounted gain of going from the current state ~m one
step in the direction of leader j. With direct competition, instead, the winning leader j makes
an offer

(64) pj(~m,AB) = δ
[
(V`(~m

`)− V`(~mj)) + (W (~m`)−W (~mj))
]
.

28This is also how competition among proposers enters in the vast majority of collective bargaining
models, including all models in the tradition of Baron and Ferejohn (1989) and Chatterjee et al. (1993).
29The negotiation state with competition is similar to a first price auction with two bidders and complete
information. As usual in these type of games, there is a continuum of equilibria in weakly dominated
strategies in which both bidders bid the same amount, but in all equilibria the winner is the bidder with
the highest willingness to pay. As is customary in the literature, we rule out these equilibria by focusing
on strategies that are weakly undominated given continuation values, so the common bid is equivalent to
the lowest willingness to pay.

https://dl.dropboxusercontent.com/u/954402/Direct.pdf
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This is the joint discounted surplus of the follower and the losing leader ` from going from the
current state ~m one step in the direction of leader ` net of their surplus of going from the current
state ~m one step in the direction of leader j.

Equation (64) makes clear the benefit that direct competition can bring to followers: the winning
leader has to compensate the follower for the payoff him and the losing leader could be making
if he were to go in the other direction. The transfer has to be this high to “price out” the
competing leader ` from the contest. This introduces an additional effect which goes against the
free-riding effect that benefits monopoly over competition.

Equation (64) also shows, however, that the potential benefit for a follower in state ~m depends
on equilibrium payoffs in states ~m` and ~mj (having moved one step in ` and j’s direction, re-
spectively). This is important, because it implies that followers’ rent extraction at later states
will diminish the potential gain for followers in early states. Thus, whether the rents brought
by direct competition can overturn the ranking of monopoly and competition in our benchmark
model depends on whether the new rents are large enough and are sufficiently not competed
away to overpower the free-riding effect which is still present in this model.

As it turns out, this can fail to happen even for a high probability that the negotiation state is
competitive. This can be seen in Tables B.1 - B.5, which provide an extensive characterization of
how direct competition affects our results in different environments. In each table, we compute
the difference between the equilibrium payoff of an uncommitted follower in the competitive game
and monopolistic games for a group size to n = 21, for given parameter values wA, wB, vAvB, δ
(we fix vA = vB = 0). In each column, we fix a value of the probability that principals can make
competing offers, πAB. Each row denotes a value of the step state m = 1, . . . , 11. For any given
step state m, we compute the difference between the value of an uncommitted follower in the
competitive game across the diagonal W (m,m), and the value of an uncommitted follower in
the monopolistic game, w(m).

Table B.1. Differential between Followers’ Payoffs in Monopoly of Best
and Competition: wA = 300, wB = 70, vA = 200, vB = 100, δ = 0.85,
n = 21.

m 0.01 0.05 0.10 0.40 0.60 0.80 0.90 0.95 0.99
1 242.1 213.7 189.7 133.3 119.9 112.0 109.1 107.9 107.0
2 128.9 121.9 114.7 81.2 75.1 70.1 67.9 66.8 66.0
3 101.4 96.4 90.9 60.9 52.3 45.1 41.8 40.3 39.1
4 87.2 83.0 78.2 50.6 39.5 30.0 25.8 23.7 22.2
5 77.0 73.5 69.3 44.4 32.5 21.8 16.9 14.6 12.8
6 68.4 65.4 61.8 39.9 28.1 17.2 12.1 9.7 7.7
7 61.4 58.1 55.0 36.1 24.9 14.3 9.3 6.8 4.9
8 54.3 51.5 48.9 32.5 22.2 12.2 7.3 5.0 3.1
9 47.6 45.4 43.2 29.1 19.8 10.5 6.0 3.7 1.9
10 41.6 39.9 38.1 26.0 17.6 9.1 4.9 2.8 1.1
11 36.2 34.9 33.4 23.1 15.7 8.0 4.1 2.1 0.6

wA = 300,wB = 70,vA = 200,vA = 0,vB =100,vB = 0,δ = 0.85,n = 21.

π AB

In table B.1 we fix wA = 300, wB = 70, vA = 200, vB = 30, and δ = 0.85. Here A represents
a markedly better alternative than B for followers, while at the same time leader A also has a
higher willingness to pay for winning than its competitor. The first column reports the results
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for the case in which direct competition only occurs with probability πAB = 0.01. The mo-
nopoly differential at the beginning of the game (at m = 11) is positive (36.2), indicating that
a monopoly of the better alternative A dominates competition. The advantage of monopoly
increases as we move to states closer to completion, reflecting the higher probability of a win
by the worst alternative. Columns 2 and above report the results of similar exercises for larger
values of the probability of direct competition. The results show that while the monopoly differ-
ential decreases as direct competition becomes more prevalent, for these parameters monopoly
dominates competition throughout, even with a probability of direct competition of πAB = 0.99.

Table B.2. Differential between Followers’ Payoffs in Monopoly of Best
and Competition: wA = 100, wB = 70, vA = 200, vB = 30, δ = 0.85,
n = 21.

m 0.01 0.05 0.10 0.40 0.60 0.80 0.90 0.95 0.99
1 78.4 61.7 47.6 14.4 6.5 1.8 0.1 )0.6 )1.1
2 43.4 37.1 31.3 14.6 9.3 5.9 4.5 3.9 3.5
3 32.6 29.3 26.0 14.7 10.5 7.4 6.2 5.7 5.3
4 27.3 25.3 23.5 14.5 10.5 7.3 5.9 5.2 4.7
5 24.2 22.8 21.3 13.7 9.9 6.5 4.9 4.1 3.5
6 21.6 20.4 19.2 12.8 9.1 5.6 3.9 3.0 2.4
7 19.2 18.3 17.3 11.7 8.2 4.7 3.0 2.2 1.6
8 17.0 16.3 15.5 10.6 7.4 4.1 2.4 1.6 1.0
9 15.0 14.4 13.8 9.6 6.6 3.5 2.0 1.2 0.6
10 13.2 12.7 12.2 8.6 5.9 3.0 1.6 0.9 0.4
11 11.5 11.1 10.7 7.6 5.2 2.7 1.4 0.7 0.2

π AB

wA =100,wB = 70,vA = 200,vA = 0,vB = 30,vB = 0,δ = 0.85,n = 21.

In table B.2 we reduce the value of a win by the attractive alternative A for the followers, setting
wA = 100 (all other parameters stay unchanged). When the probability of direct competition is
low enough (πAB ≤ 0.9), monopoly dominates competition for all m ≤ 11. Differently than in
the first table, when the probability of direct competition is sufficiently large (πAB ≥ 0.95) the
value of an uncommitted follower is greater in competition than under monopoly for the critical
follower m = 1. However, even for these high levels of direct competition, the value differential
reverts to favoring monopoly at the beginning of the game.

The reason for this is illustrated by the analytical results. The way in which direct competition
helps followers is that in competitive negotiation states, the leader needs to pay the follower to
dissuade him from favoring the other leader. This rent (eq.5) is increasing in the value differential
for the losing leader of going one step towards her direction instead of the winner’s direction,
and the follower’s value differential of going towards the losing leader’s direction instead of the
winner’s. Since the last follower is able to extract the rent from the winner of direct competition
at m = 1 (A in this case), this reduces the follower’s value differential of going towards the
loser’s direction instead of the winner’s at m = 2. For the parameters considered here, it is
enough to overturn it completely by m = 2.

This is crucial to understand why the sole existence of competition is not sufficient to overturn
our results. When the races are tight – which is what happens across the diagonal of the com-
petitive game – followers’ gains in later step states (say m′) reduce leaders’ willingness to pay
in early step states (m′′ > m′). This dynamic effect dampens the benefits of direct competition
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in the initial stages of the game.

Table B.3. Differential between Followers’ Payoffs in Monopoly of Best
and Competition: wA = 100, wB = 70, vA = 200, vB = 100, δ = 0.85,
n = 21.

m 0.01 0.05 0.10 0.40 0.60 0.80 0.90 0.95 0.99
1 74.6 46.2 22.3 (34.2 (47.6 (55.5 (58.4 (59.6 (60.5
2 42.0 31.1 21.1 (7.5 (16.2 (22.1 (24.5 (25.5 (26.3
3 33.5 27.0 20.9 3.0 (3.3 (6.3 (7.0 (7.2 (7.3
4 28.4 24.2 20.3 7.5 3.1 1.0 0.5 0.3 0.3
5 24.7 22.0 19.2 9.5 5.9 3.7 2.8 2.4 2.1
6 21.9 19.9 17.9 10.2 6.9 4.4 3.2 2.5 2.0
7 19.4 17.9 16.4 10.1 7.0 4.3 2.9 2.1 1.5
8 17.1 16.0 14.8 9.6 6.7 3.9 2.4 1.6 1.0
9 15.1 14.3 13.3 8.9 6.2 3.4 2.0 1.2 0.6
10 13.2 12.6 11.9 8.1 5.7 3.0 1.6 0.9 0.4
11 11.6 11.1 10.5 7.3 5.1 2.6 1.4 0.7 0.2

wA =100,wB = 70,vA = 200,vA = 0,vB =100,vB = 0,δ = 0.85,n = 21.

π AB

In table B.3 we increase the value of the a win for the principal favoring the unattractive al-
ternative for followers (B) to vB = 100, maintaining all other parameters as in Table 2. This
is the leader with the lower willingness to pay and who is also least preferred by the followers,
so it is the leader that will lose on the competition stage across the diagonal. But because
her willingness to pay is now higher, A needs to improve her offer to followers, who derive a
larger benefit from direct competition. As expected, this increases the range of πAB for which
competition is preferred to monopoly for uncommitted followers at later stages of the game
(m = 1, 2, 3). However, still monopoly beats competition for all πAB ≤ 0.99 at the initial state.
In table B.4 we increase the discount factor from δ = 0.85 to δ = 0.95, maintaining all other
parameters unchanged. This increases the range of states for which competition is preferred to
monopoly for sufficiently high probability of direct competition. Still in each case the initial
value differential favors monopoly.

Table B.4. Differential between Followers’ Payoffs in Monopoly of Best
and Competition: wA = 100, wB = 70, vA = 200, vB = 100, δ = 0.95,
n = 21.

m 0.01 0.05 0.10 0.40 0.60 0.80 0.90 0.95 0.99
1 67.4 11.7 &16.9 &55.7 &61.8 &65.0 &66.1 &66.5 &66.9
2 41.5 15.4 0.6 &25.7 &31.9 &35.9 &37.6 &56.8 &56.8
3 35.5 17.2 6.4 &14.2 &18.2 &19.4 &19.3 &45.4 &43.3
4 32.1 18.6 9.9 &7.1 &9.7 &9.3 &8.2 &35.4 &29.8
5 30.0 19.7 12.4 &2.1 &4.0 &3.4 &2.4 &28.6 &19.6
6 28.9 20.6 14.3 1.5 &0.1 0.0 0.3 &6.6 &11.1
7 28.2 21.3 15.8 4.2 2.5 1.9 1.4 &2.5 &4.5
8 27.6 21.8 17.0 6.3 4.2 2.8 1.8 0.3 0.9
9 27.1 22.1 17.8 7.9 5.4 3.3 1.9 0.7 5.1
10 26.7 22.3 18.5 9.1 6.3 3.5 1.8 0.7 8.4
11 26.2 22.4 19.0 9.9 6.8 3.5 1.7 0.4 11.1

wA =100,wB = 70,vA = 200,vA = 0,vB =100,vB = 0,δ = 0.95,n = 21.

π AB
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In table B.5 we further reduce the payoff differential between alternatives for the followers,
increasing wB to 90, and also increase vB to 200, eliminating the differential in leaders’ will-
ingness to pay (We maintain all else constant as in table B.4.) Both of these changes increase
the symmetry among alternatives. As the table shows, in this case competition beats monopoly
even at the beginning of the game when the probability of direct competition is sufficiently high
(πAB ≥ 0.90). In addition, competition is preferred to monopoly for followers at later stages in
the game, even for a more moderate probability of direct competition (for m ≤ 7 at πAB = 0.40
and m ≤ 4 at πAB = 0.10).30

Table B.5. Differential between Followers’ Payoffs in Monopoly of Best
and Competition: wA = 100, wB = 90, vA = 200, vB = 200, δ = 0.95,
n = 21.

m 0.01 0.05 0.10 0.40 0.60 0.80 0.90 0.95 0.99
1 48.2 &46.8 &95.5 &161.8 &172.1 &177.6 &179.5 &180.2 &180.8
2 28.5 &14.8 &37.3 &70.0 &75.9 &79.3 &80.5 &81.0 &81.4
3 24.7 &4.8 &19.9 &40.0 &41.7 &41.5 &41.0 &40.8 &40.7
4 23.5 1.2 &10.2 &24.0 &24.2 &23.0 &22.4 &22.2 &22.0
5 23.1 5.3 &3.7 &14.1 &13.9 &13.2 &13.1 &13.1 &13.1
6 23.0 8.4 1.0 &7.4 &7.5 &7.7 &8.1 &8.3 &8.6
7 23.0 10.8 4.7 &2.6 &3.3 &4.4 &5.2 &5.7 &6.1
8 23.0 12.8 7.5 0.8 &0.5 &2.3 &3.4 &4.0 &4.5
9 23.0 14.3 9.7 3.4 1.5 &0.9 &2.3 &2.9 &3.4
10 23.0 15.5 11.5 5.3 2.9 0.0 &1.4 &2.1 &2.6
11 23.0 16.4 12.9 6.8 3.9 0.7 ,0.9 ,1.6 ,2.1

wA =100,wB = 90,vA = 200,vA = 0,vB = 200,vB = 0,δ = 0.95,n = 21.

π AB

Finally, it is interesting to compare followers’ welfare in monopoly and competition for δ ap-
proaching one (as frictions vanish). In Figure B.2 we do this for the parameters we considered in
Table B.5 and a probability of direct competition of πAB = 0.95, where we showed that competi-
tion beats monopoly even at the beginning of the game. The figure plots uncommitted followers
equilibrium payoff in monopoly and competition as a function of the step state m = 1, . . . , 11
for δ = 0.95, as in table B.5 (left panel) and δ = 0.999 (right panel). As the figure shows, with
the high discount factor the result is reversed, and monopoly again beats competition at the
beginning of the game.

Conclusions. Introducing the possibility of direct competition undoubtedly improves the stand-
ing of competition vis a vis monopoly. Because in simultaneous bidding both leaders are willing
to increase their offers as long as there is a surplus, followers can extract additional rents from
the winning leader, who has to raise the transfer enough to exhaust the surplus of the competi-
tor. In a dynamic game, however, the benefit of direct competition is not shared equally among
followers. In fact, because these additional rents are heavily captured by followers at the end
stages in the game, leaders’ willingness to pay to win in direct competition diminishes in early
stages, where followers see a reduced advantage from direct competition.

Whether the possibility of direct competition can overturn the ranking of monopoly and competi-
tion in our benchmark model depends on whether new rents are large enough and are sufficiently

30Still, if given the choice to enter a monopoly or competitive game, followers would still choose monopoly
as long as the probability of direct competition is not larger than 0.80.
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Figure B.2. Followers’ Value in Monopoly and Competition for δ = 0.95
(left panel) and δ = 0.999 (right panel). Parameters as in last column
of Table B.5: wA = 100, wB = 90, vA = 200, vB = 200, n = 21, with
probability of direct competition πAB = 0.95.

not competed away to overpower the free-riding effect that we identified in the paper, and which
is still present here. In particular, the race between the ability to capture rents in direct com-
petition and the free-riding effect can benefit competition for some parameters. However, as
long as both direct competition and bilateral bargaining are possible, the effect of free-riding on
bargaining persists, and implies that for many parameter configurations monopoly beats compe-
tition even when direct competition is prevalent. We conclude that the mechanism we identify
in the paper on the bargaining consequences of free-riding opportunities is still important in the
presence of direct competition.
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7.3. Commitment to Reject. In the paper we assumed that if a follower rejects an offer from
a/the leader, the follower returns to the pool of uncommitted followers, and can possibly accept
an offer at a later time (if one is extended to him). Here we study an extension of the model
in which followers can choose to reject offers permanently, leaving the pool of uncommitted
followers (i.e., followers can now accept, reject, or leave).

In this context the state space is multidimensional even in the single leader case. The reason is
that when a supporter leaves he reduces the pool of uncommitted followers without increasing
the support for the leader. Because this reduces the free-riding opportunities of the remaining
uncommitted followers, we need to keep track of both the additional number of followers which
the leader needs to win, m, and the number of remaining uncommitted followers, u. We also
need to consider the possibility that the leader/s knowingly makes a low offer to reduce the
number of uncommitted followers.

For simplicity, we consider a three-agent example. We show that when the leader/s value for
winning is sufficiently large, the equilibrium payoff of an uncommitted follower in a MPE of the
monopoly game is larger than his equilibrium payoff in the competitive game.

Consider first monopoly. From the same arguments that we used in the benchmark model, we
know that for large v, the only candidate for a MPE is a full trading equilibrium (FTE). We
therefore directly focus on equilibria of this class. We show that when v is large there exists a
FTE, and the equilibrium payoff of an uncommitted follower is given by:

w(2, 3) = (1 + 2δ) (δ2/3)w

Proof. Consider first (m,u) = (1, 1), a state in which a single remaining uncommitted follower
is pivotal for the decision (after one follower accepted and one follower left). Note that leaving
gives the follower a payoff of zero, while rejecting an offer gives him a payoff of δw(1, 1). Then
an optimal relevant offer satisfies

δw + p(1, 1) = max{δw(1, 1), 0} ⇒ p (1, 1) = max{δw(1, 1), 0} − δw.
Then w(1, 1) = max{δw(1, 1), 0} ⇒ w(1, 1) = 0. It follows that p (1, 1) = −δw, giving the leader
a payoff of v(1, 1) = δv − p(1, 1) = δ(v +w). Since v(1, 1) > 0, deviating to not making an offer
– which gives the leader a payoff of δv(1, 1) < v(1, 1) – is not a profitable deviation. And since
the follower is pivotal, deviating to a non-relevant offer p̃ (1, 1) < p(1, 1) gives her a payoff of
zero, and is not profitable either.

Consider next the state in which exactly one follower has committed his support to the leader
and nobody left; (m,u) = (1, 2). Note that the optimal relevant offer by the leader must verify

p (1, 2) + δw = δmax {wout (1, 1) , w (1, 2)}
Suppose first that w (1, 2) ≥ wout (1, 1) = δw. Then p (1, 2) = δw (1, 2)− δw, and

w(1, 2) =
1

2
δw (1, 2) +

1

2
δw ⇒ w(1, 2) =

δ

2− δ
w < δw = wout (1, 1) ,

a contradiction. Thus, the follower prefers to leave than to reject the offer, and we must have
w (1, 2) ≤ wout (1, 1) = δw. Thus p (1, 2) = −δ (1− δ)w, giving the leader a payoff v(1, 2) =
δv − p(1, 2) = δ(v + (1− δ)w) > 0. Since v(1, 2) > 0, deviating to not making an offer – which
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gives the leader a payoff of δv(1, 2) < v(1, 2) – is not a profitable deviation. In this context,
however, the leader could also deviate to making a non-relevant offer p̃ (1, 2) < −δ (1− δ)w to
transition to the state (1, 1). In this case she obtains a payoff δv(1, 1) = δ2(v + w). This is not
a profitable deviation if (1− δ)v + (1− 2δ)w ≥ 0, which is always satisfied for large v. Then

w (1, 2) =
1

2
δwout (1, 1) +

1

2
δw =

1

2
δ(1 + δ)w

Consider next the state (m,u) = (2, 2), reached after the first follower chose to leave. Note that
in this situation, both followers are critical (and hence there are no free riding opportunities).
Thus leaving gives a follower a payoff of zero. An optimal relevant offer then satisfies

p (2, 2) + δwout (1, 1) = 0⇒ p (2, 2) = −δ2w,

giving the leader a payoff of v(2, 2) = δv(1, 1) − p(2, 2) = δ2(v + 2w) > 0. As before, deviating
to not making an offer only delays this outcome and is not a profitable deviation. And since the
follower is pivotal, deviating to a non-relevant offer p̃ (2, 2) < p(2, 2) gives her a payoff of zero,
and is not profitable. Therefore w(2, 2) = 0, and wout(2, 2) = δ2w.

Finally, consider the initial state (2, 3). Note that the optimal relevant offer by the leader must
verify

p (2, 3) + δwout (1, 2) = δmax {w (2, 3) , wout (2, 2)}
Assume first that w (2, 3) ≥ wout (2, 2). Then p (2, 3) = δ[w (2, 3)− wout (1, 2)], and

w(2, 3) =
1

3
δw (2, 3) +

2

3
δw(1, 2)⇒ w(2, 3) =

δ2(1 + δ)

(3− δ)
w < δ2w = wout (2, 2) ,

a contradiction. Thus, the follower prefers to leave than to simply reject the offer, and we must
have w (2, 3) ≤ wout (2, 2) = δ2w. Thus

p (2, 3) = δwout (2, 2)− δwout(1, 2) = −(1− δ)δ2w,
giving the leader a payoff

v(2, 3) = δv(1, 2)− p(2, 3) = δ2(v + 2(1− δ)w) > 0.

Since v(2, 3) > 0, deviating to not making an offer – which gives the leader a payoff of δv(2, 3) <
v(2, 3) – is not a profitable deviation. In this context, however, the leader could also deviate to
making a non-relevant offer p̃ (2, 3) < −(1−δ)δ2w to transition to the state (2, 2). In this case she
obtains a payoff δv(2, 2) = δ3(v+2w). This is not a profitable deviation if v(1−δ)+2(1−2δ)w ≥ 0,
which is always satisfied for large v. Then

w(2, 3) =
1

3
δ3w +

2

3
δw(1, 2)⇒ w(2, 3) = (1 + 2δ) (δ2/3)w

We now consider followers’ equilibrium payoffs in the competitive game. In this case the state
is (~m, u). As before, we assume that leaders have a high valuation for winning. We also assume
that both leaders prefer to retain the status quo rather than losing to the competition; i.e.,
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vA < 0 and vB < 0.31 Under this conditions, we show that there is a full trading equilibrium,
and that the followers’ payoffs are given by

W (2, 2, 3) =

(
1 + 2δ

3

)[
(δπA)2wA + (δπB)2wB

]
.

Proof. Consider first the state (~m, u) = (1, 1, 1), in which there is only one uncommitted follower,
and both leaders need the support of only one additional follower to win. Suppose the follower
meets with leader ` = A,B, who makes him an offer. Note that leaving gives the follower a payoff
of zero, while rejecting the offer gives him a payoff of δW (1, 1, 1). Then an optimal relevant offer
by ` satisfies

δw + p`(1, 1, 1) = max{δW (1, 1, 1), 0} ⇒ p` (1, 1, 1) = max{δW (1, 1, 1), 0} − δw,
Since this is the same for both leaders, we have that W (1, 1, 1) = max{δW (1, 1, 1), 0} ⇒
W (1, 1, 1) = 0. It follows that p` (1, 1, 1) = −δw, giving the leader a payoff of V `

` (1, 1, 1) =
δv` − p` (1, 1, 1) = δ(v` + w) > 0. Note that `′s payoff in state (~m, u) = (1, 1, 1) after leader

j 6= ` meets with the follower is V j
` (1, 1, 1) = v` < V `

` (1, 1, 1). Thus, deviating to not making an
offer gives the leader a payoff of

δV`(1, 1, 1) = δ[π`V
`
` (1, 1, 1) + πjV

j
` (1, 1, 1)] < V `

` (1, 1, 1)

and is not profitable. Now consider a non-relevant offer, p̃` (1, 1, 1) < p`(1, 1, 1). Since the
follower is indifferent between rejecting or leaving, we have to consider two possibilities. If he
leaves, the leader gets a payoff of zero. If he rejects, the leader gets a payoff of δV`(1, 1, 1). In
both cases, this gives the leader a lower payoff than what she obtains in equilibrium, and thus
a non-relevant offer is not a profitable deviation. To summarize, we have

W (1, 1, 1) = 0

VA (1, 1, 1) = δπA (vA + wA) + δπBvA
VB (1, 1, 1) = δπAvB + δπB (vB + wB)

Wout (1, 1, 1) = δ (πAwA + πBwB)

Consider next the state (~m, u) = (1, 2, 1). In this case there is one uncommitted follower, but
B is two steps away from winning. It follows that by getting the follower’s support, B can only
assure that the status quo will prevail, but can not win. In this case leaving gives the follower
a payoff of zero, so the best outside option is to reject, giving a payoff of δW (1, 2, 1). Thus the
optimal relevant offers satisfy

pB (1, 2, 1) = δW (1, 2, 1)

pA (1, 2, 1) + δwA = δW (1, 2, 1)

31The assumption that leaders have a high valuation for winning implies that in equilibrium meetings
result in trades in all but two states. The exception is the state (~m, u) = (1, 2, 1) – and symmetrically,
the state (~m, u) = (2, 1, 1) – in which leader B cannot win (she needs two additional supporters, but there
is only one uncommitted follower) but can force a tie. Here equilibrium behavior depends on whether
B prefers to retain the status quo rather than losing to A, or vice versa. For concreteness, we assume
that both leaders prefer to retain the status quo rather than losing to the competition, i.e., vA < 0 and
vB < 0. We then show that our main result is unchanged if leaders prefer the status quo to losing to the
competition.
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Leader ` = A,B prefers to make this offer instead of passing iff

0− pB (1, 2, 1) ≥ δVB (1, 2, 1)

δvA − pA (1, 2, 1) ≥ δVA (1, 2, 1)

or equivalently

VB (1, 2, 1) +W (1, 2, 1) ≤ 0

VA (1, 2, 1) +W (1, 2, 1) ≤ vA + wA

Note that in equilibrium

W (1, 2, 1) = πAδW (1, 2, 1) + πBδW (1, 2, 1) = 0

VA (1, 2, 1) = πA (δvA − pA (1, 2, 1)) = πAδ (vA + wA)

VB (1, 2, 1) = πAδvB

Thus substituting,

πAδvB ≤ 0

vA(1− πAδ) + wA(1− πAδ) ≥ 0

Note that the first inequality is satisfied iff vB ≤ 0, while the second is satisfied for large vA.
Thus, leaders prefer to make relevant offers than to pass. Note moreover that if leader ` deviates
to a non-relevant offer, she gets δV`(1, 2, 0) = 0, which is not a profitable deviation. Analogously,
in state (~m, u) = (2, 1, 1), we have

W (2, 1, 1) = 0

VB (2, 1, 1) = πBδ (vB + wB)

VA (2, 1, 1) = πBδvA

Next, consider the state (~m, u) = (1, 2, 2), where two followers remain uncommitted, A is one
step from winning, and B is two steps from winning. Optimal relevant offers verify

pA (1, 2, 2) + δwA = δmax {Wout (1, 2, 1) ,W (1, 2, 2)}
pB (1, 2, 2) + δWout (1, 1, 1) = δmax {Wout (1, 2, 1) ,W (1, 2, 2)}

Assume first that the equilibrium is such that W (1, 2, 2) ≥Wout (1, 2, 1) which implies that

W (1, 2, 2) = (δ/2)W (1, 2, 2) +
1

2
πAδwA +

1

2
πBδW (1, 1, 1)⇒W (1, 2, 2) =

πAδ

2− δ
wA.

Since we assume that W (1, 2, 2) ≥Wout (1, 2, 1) it must be that

πAδ

2− δ
wA ≥ πAδwA + πBδWout (1, 1, 0) = πAδwA ⇒ δ ≥ 1,

which is a contradiction. Therefore W (1, 2, 2) < Wout (1, 2, 1), so that leaving is the relevant
outside option. The offers are then given by

pA (1, 2, 2) = −δ
(

1− δ
1− δπB

)
wA

pB (1, 2, 2) = −δ2πB
(
wB −

δπA
1− δπB

wA

)
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Equilibrium payoffs are therefore

W (1, 2, 2) =
1

2
δWout (1, 2, 1) +

1

2
(πAδwA + πBδW (1, 1, 1))

Wout (1, 2, 2) = πAδwA + πBδWout (1, 1, 1)

VA (1, 2, 2) = πA (δvA − pA (1, 2, 2)) + πBδVA (1, 1, 1)

VB (1, 2, 2) = πAδvB + πB (δVB (1, 1, 1)− pB (1, 2, 2))

or substituting,

W (1, 2, 2) =
1

2
πAδwA(1 + δ)

Wout (1, 2, 2) = πAδwA + πBδ
2[πAwA + πBwB]

VA (1, 2, 2) = πAδ

(
vA +

(
1− δ

1− δπB

)
wA

)
+ πBδ

2[πA (vA + wA) + πBvA]

VB (1, 2, 2) = πAδvB + πBδ
2

(
[πAvB + πB (vB + wB)] + πB

(
wB −

δπA
1− δπB

wA

))
Each leader prefers to make a relevant offer than to pass iff

δvA − pA (1, 2, 2) ≥ δVA (1, 2, 2)

δVB (1, 1, 1)− pB (1, 2, 2) ≥ δVB (1, 2, 2)

Substituting, these are

(1− δπA(1 + δπB))vA ≥ A

(1− δπB)vB ≥ B

for some constants A and B that do not depend on vA, vB. Now 1 > δπA(1 + δπB) iff δπA[1 +
δ(1 − πA)] < 1. LHS is increasing in δ, so it is enough to show that πA[2 − πA] ≤ 1. But
the LHS of this expression is maximized at πA = 1, attaining a value of 1. It follows that
δπA(1 + δπB) < 1, and hence that both inequalities are satisfied for large vA, vB.

Moreover, each leader prefers to make a relevant offer than to make a non-relevant offer iff

δvA − pA (1, 2, 2) ≥ δVA (1, 2, 1)

δVB (1, 1, 1)− pB (1, 2, 2) ≥ δVB (1, 2, 1)

or substituting,

vA(1− πAδ) +

(
1− δ

1− δπB

)
wA ≥ πAδwA

(vB + wB) +

(
wB −

δπA
1− δπB

wA

)
≥ 0

which again hold for high vA, vB, and we are done.
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Analogously,

W (2, 1, 2) =
1

2
πBδwB(1 + δ)

Wout (2, 1, 2) = πBδwB + πAδ
2[πAwA + πBwB]

VB (2, 1, 2) = πBδ

(
vB +

(
1− δ

1− δπA

)
wB

)
+ πAδ

2[πB (vB + wB) + πAvB]

VA (2, 1, 2) = πBδvA + πAδ
2

(
[πBvA + πA (vA + wA)] + πA

(
wA −

δπB
1− δπA

wB

))
Consider next the state (2, 2, 2), where there are two uncommitted followers and both leaders are
still two steps away from winning. Since leaving gives a follower a payoff of δWout (2, 2, 1) = 0,
the relevant outside option is given by δW (2, 2, 2) which implies that optimal relevant offers will
satisfy

pA (2, 2, 2) + δWout (1, 2, 1) = δW (2, 2, 2)

pB (2, 2, 2) + δWout (2, 1, 1) = δW (2, 2, 2)

It follows that

W (2, 2, 2) =
1

2
δW (2, 2, 2) +

1

2
δ(πAW (1, 2, 1) + πBW (2, 1, 1))

and using W (1, 2, 1) = W (2, 1, 1) = 0, we have W (2, 2, 2) = 0, so that

pA (2, 2, 2) = −δWout (1, 2, 1)

pB (2, 2, 2) = −δWout (2, 1, 1)

and equilibrium payoffs are given by

W (2, 2, 2) = 0

Wout (2, 2, 2) = δ (πAWout (1, 2, 1) + πBWout (2, 1, 1))

VA (2, 2, 2) = πA (δVA (1, 2, 1)− pA (2, 2, 2)) + πBδVA (2, 1, 1)

VB (2, 2, 2) = πAδVB (1, 2, 1) + πB (δVB (2, 1, 1)− pB (2, 2, 2))

which after substituting, become

W (2, 2, 2) = 0

Wout (2, 2, 2) = (δπA)2wA + (δπB)2wB

VA (2, 2, 2) = (δπA)2 (vA + wA) + (δπA)2wA + (δπB)2vA

VB (2, 2, 2) = (δπB)2 (vB + wB) + (δπB)2wB + (δπA)2vB

Leaders prefer to make these offers to passing iff

δV A (1, 2, 1)− pA (2, 2, 2) ≥ δVA (2, 2, 2)

δV B (2, 1, 1)− pB (2, 2, 2) ≥ δVB (2, 2, 2)

Substituting, these are

δ2(1− δπA)πA (vA + wA)− πBδ2πBδvA + δ(1− δπA)Wout (1, 2, 1) ≥ 0

δ2(1− δπB)πB (vB + wB)− πAδ2πAδvB + δ(1− δπB)Wout (2, 1, 1) ≥ 0
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which always hold for high vA, vB. Similarly, it is easy to check that a deviation to making a
non-relevant offer is not profitable either.

Finally, consider the initial state (~m, u) = (2, 2, 3). First note that the offers must verify

pA (2, 2, 3) + δWout (1, 2, 2) = δmax {W (2, 2, 3) ,Wout (2, 2, 2)}
pB (2, 2, 3) + δWout (2, 1, 2) = δmax {W (2, 2, 3) ,Wout (2, 2, 2)}

Assume first that W (2, 2, 3) ≥Wout (2, 2, 2). Then

W (2, 2, 3) =
1

3
δW (2, 2, 3) +

2

3
(πAδW (1, 2, 2) + πBδW (2, 1, 2)) ,

and substituting,

W (2, 2, 3) =
1

(3− δ)
(
(δπA)2wA(1 + δ) + (δπB)2wB(1 + δ)

)
Since we have assumed that W (2, 2, 3) ≥Wout (2, 2, 2), we need to verify that

1

(3− δ)
(
(δπA)2wA(1 + δ) + (δπB)2wB(1 + δ)

)
≥ (δπA)2wA + (δπB)2wB

which is false. Therefore, we must have that W (2, 2, 3) ≤Wout (2, 2, 2) and the optimal relevant
offers are

pA (2, 2, 3) = δ[Wout (2, 2, 2)−Wout (1, 2, 2)]

pB (2, 2, 3) = δ[Wout (2, 2, 2)−Wout (2, 1, 2)]

The leaders prefer to make these offers to passing iff

δVA (1, 2, 2)− pA (2, 2, 3) ≥ δVA (2, 2, 3)

δVB (2, 1, 2)− pB (2, 2, 3) ≥ δVB (2, 2, 3)

or substituting, iff

vAπA[(1− δπA)(1 + δπB)− (δ)2πBπA] ≥ A

vBπB[(1− δπB)(1 + δπA)− (δ)2πAπB] ≥ B

whereA andB are constants that do not depend on vA, vB. Now, (1−δπA)(1+δπB)−(δ)2πBπA ≥
0 iff 1 + δ ≥ 2δπA(1 + δ(1 − πA)). The RHS of this inequality is maximized for a value of
πA = (1 + δ)/2δ. Substituting, the previous inequality becomes δ ≤ 1. It follows that leaders
prefer to make a relevant offer to passing for high vA, vB.

Similarly, the leaders prefer making relevant offers to making not relevant offers iff

δVA (1, 2, 2)− pA (2, 2, 3) ≥ δVA (2, 2, 2)

δVB (2, 1, 2)− pB (2, 2, 3) ≥ δVB (2, 2, 2)

Substituting, we have

vAδπA [1 + δ(1− 2πA)] ≥ A

vBδπB [1 + δ(1− 2πB)] ≥ B
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where A and B are constants that do not depend on vA, vB. Since 1 + δ(1 − 2π`) ≥ 0 for all
δ, π` ∈ (0, 1), these inequalities always hold for high vA, vB, and we are done. The value for the
uncommitted follower is then

W (2, 2, 3) =

(
1 + 2δ

3

)[
(δπA)2wA + (δπB)2wB

]
We can now compare followers values in monopoly and competition. In monopoly

w(2, 3) = (1 + 2δ) (δ2/3)w

and in competition

W (2, 2, 3) =

(
1 + 2δ

3

)[
(δπA)2wA + (δπB)2wB

]
Let max{wA, wB} = w. A monopoly of the best alternative is preferred to competition for all
wA, wB > 0 iff

(πA)2 + (πB)2 ≤ 1

which is always true.

In the comparison above we maintained the assumption that leaders have a high valuation
for winning. We also assumed that both leaders prefer to retain the status quo rather than
losing to the competition; i.e., vA < 0 and vB < 0. These assumptions imply that while in
state (~m, u) = (1, 2, 1) B cannot win (B needs two additional supporters, but there is only one
uncommitted follower), it still makes a relevant offers in order to force a tie. Similarly, A makes
a relevant offer in state (~m, u) = (2, 1, 1). The main result, however, doesn’t depend on this
assumption. Proceeding similarly as above we can show that if instead leaders prefer the status
quo to losing to the competition, followers value is given by

W (2, 2, 3) =
1

3
δ2
{(

1 + δ(1 + πA)

1− δπB

)
(πA)2wA +

(
1 + δ(1 + πB)

1− δπA

)
(πB)2wB

}
It follows that a monopoly of the best alternative is preferred to competition for all wA, wB > 0
iff

(1 + 2δ) ≥
(

1 + δ(1 + πA)

1− δπB

)
(πA)2 +

(
1 + δ(1 + πB)

1− δπA

)
(πB)2

or equivalently,(
1 + δ(1 + πA)

(1 + 2δ)

)
1

1− δπB
(πA)2 +

(
1 + δ(1 + πB)

(1 + 2δ)

)
1

1− δπA
(πB)2 ≤ 1

Note that since 1+δ(1+π`)
(1+2δ) < 1, it is enough to show that

1

1− δπB
(πA)2 +

1

1− δπA
(πB)2 ≤ 1

But 1− δπB > πA and 1− δπA > πB, so

1

1− δπB
(πA)2 +

1

1− δπA
(πB)2 <

1

πA
(πA)2 +

1

πB
(πB)2 = πA + πB = 1,

which establishes the result.
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7.4. Contingent Payments. In the paper we assumed that leaders offer instantaneous cash
transfers in exchange for a commitment of support. Transfers that occurred in the past are
sunk, and hence do not affect the incentives in subsequent periods. Alternatively one can
assume that the leader and the follower agree on a contingent transfer in exchange for support;
a “partnership” offer instead of a buyout. This in fact seems the most appropriate assumption
in some applications, as in the case of endorsements by party elders in presidential primaries.
In this case candidates negotiate with party elders their support, but they do so in exchange of
future promises.

Substituting cash for promises can change the conditions for existence of a fully competitive
equilibrium, but does not alter the conclusions regarding the ranking of competition and mo-
nopoly. Let W̃out(~m

′|pj(~m)) denote the value in state ~m′ = (m′A,m
′
B) of a committed follower

locked with a promise pj(~m) acquired towards leader j in state ~m = (mA,mB). Note that

W̃out(~m
′|pA(~m)) =

∑
t

Pr
(
j wins in t periods | ~m′

)
δt[wj + pj(~m)]

+
∑
t

Pr
(
` wins in t periods | ~m′

)
δtw`

= Wout(~m
′) +

∑
t

Pr
(
j wins in t periods | ~m′

)
δtpj(~m)︸ ︷︷ ︸

p̃j(~m′, ~m)

,

(65)

where Wout(~m
′) denotes the value of a committed follower in state ~m′ in the cash game, and

p̃j(~m
′, ~m) gives the expected value of the contingent transfer pj(~m) in state ~m′. Note then

that the value function W̃out(~m
′|p`(~m)) is separable in transfers and the value derived from

implementing the alternative. Thus when ` meets an uncommitted follower in state ~m, she
offers a contingent payment p`(~m) such that

(66) p̃`(~m
`, ~m) + δWout(~m

`) = δW̃ (~m)

This implies that the continuation payoff of a follower after he meets one of the leaders is δW̃ (~m)

no matter what, and therefore the recursive representation of W̃ (~m) is given by (15) as in the

“cash” game, so that W̃ (q, q) = W (q, q); i.e., the value of the uncommitted follower at the
beginning of the promises game is equal to the value in the cash game. This moreover implies
by (66) that the expected value of the payment in the promise game is the same as in the cash
game.

Now, to evaluate existence of a fully competitive equilibrium (for our large n results), we need
to consider the value of the leader. And in this regard there is in fact a crucial difference with
the benchmark cash model. Note that since promises are executed if and only when the leader
wins, present exchanges now affect the incentives for future exchanges and must be incorporated
on the value function. In particular, the relevant state in the promises game is composed of the
number of additional followers that each leader needs in order to win, as before, but now also
the stock of promises that a leader brings to the table when meeting another follower.

This difference complicates the algebra, but does not alter our main results. To see this note that
after a leader wins, she obtains a payoff composed of a direct benefit v` and a transfer from/to
all committed followers. These two components are, indeed, additively separable. Moreover,
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this property still holds recursively, which implies that the value function of the leader in any
state – now with the stock of promises as part of the state – is also additively separable in the
utility for winning and the promises collected if and when she wins. It follows immediately that
Proposition 4.1 extends to this case and a fully competitive equilibrium exists for sufficiently
high υ or υ − υ. A similar argument holds for the monopoly case, and the welfare comparison
in the paper holds.
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7.5. Simultaneous Contracting in the Monopolistic Model. Here we compare simultane-
ous and sequential contracting in the public goods model with a single alternative. To consider
the static setting, we follow Segal and Whinston (2000). Segal and Whinston consider two con-
tracting environments: one in which the leader can make discriminatory offers (allowing pi 6= pj
for followers i, j), and one in which the leader cannot discriminate among followers, so that she
has to offer a single offer p. We consider each in turn.

As a benchmark, recall that in the sequential monopoly game, the leader’s equilibrium payoff is
given by

(67) v (m) = δmv +

[
m∑
l=1

(
1− δ

l∏
k=1

r(k)

)]
δmw

As we explained in the paper, in the limit as δ → 1 followers’ bargaining power is maximized,
and the leader has no ability to extract rents, so that v (m)→ v. For δ < 1, however, followers’
bargaining power decreases, and the leader can in fact extract rents from the followers. The
effect of reducing the discount factor on the leader’s value at the beginning of the game then
exhibits a tradeoff between a higher ability to extract rents from followers and a larger loss
from discounting. When w is small, the effect of discounting dominates, and the leader’s value
increases monotonically with δ approaching v as δ → 1. When w is larger, the rent extraction
effect dominates for high δ, and the leader’s equilibrium payoff is maximized for a δ̃ ∈ (0, 1).
For low enough δ, of course, the discounting effect dominates, and the leader’s value falls mono-
tonically with δ, with v (m) → 0 as δ → 0. In this case the simultaneous game obviously gives
the leader a larger payoff than the sequential offer game.

Consider next the static game with nondiscriminatory offers. First, note that there exists an
equilibrium in which all followers accept offers p ≥ 0 and reject offers p < 0, and the leader
offers p = 0. For any p ≥ 0 all followers accept, so a follower i cannot gain by deviating to
reject (would only lose p). For p < 0, all followers reject in equilibrium. If i were to deviate and
accept, she would lose p. Given followers’ strategy, the leader cannot gain by offering p′ 6= 0: any
p′ > 0 would only mean larger transfers to the followers, and p′ < 0 would lead her to lose. Note
that neither leader nor followers are using weakly dominated strategies. In this equilibrium, the
leader obtains a payoff of v, and does not extract rents from the followers.

There also exists an equilibrium in which the leader obtains a payoff v + n+1
2 w. Suppose that

for any p ∈ [−w, 0) followers 1, 2, . . . , (n+ 1)/2 accept, and (n+ 3)/2, . . . , n reject, for p ≥ 0 all
followers accept, and for all p < −w all followers reject. The leader offers p = −w. Consider first
p ∈ [−w, 0). Followers i ≥ (n+ 3)/2 don’t have an incentive to deviate, for the leader is already
winning, and would only do worst by accepting the offer. Followers i ≤ (n+1)/2 are pivotal, and
thus as long as p ≥ −w, have no profitable deviations. As before, for p ≥ 0 or p < −w, followers
have no profitable deviations. The leader doesn’t have a profitable deviation. In equilibrium,
she obtains a payoff v + n+1

2 w. If she were to offer p < −w, she would get 0 < v + n+1
2 w. If she

were to offer p ∈ (−w, 0) she would only be reducing rent extraction. If she were to offer p ≥ 0
she would get v < v + n+1

2 w.

Next consider the static game with discriminatory offers. As in the previous case, with dis-
criminatory offers there is a SPE in which the leader can extract all the surplus from (n+ 1)/2
followers. In particular, suppose that the leader offers p = −w to a set I of (n+ 1)/2 followers,
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and p̃ < −w to a set O of (n− 1)/2 followers, and that followers accept any offer pi ≥ −w and
reject any offer pi < −w. Followers in O do not have a profitable deviation, since accepting
gives them a payoff w− p̃ < 0. Followers i ∈ I get an equilibrium payoff of zero. But since each
i ∈ I is pivotal in equilibrium, rejecting doesn’t improve his payoff. The leader cannot gain by
proposing a different ~p: whenever more than (n + 1)/2 followers accept offers pi < 0 for sure,
any one follower would prefer to deviate and reject the offer. And increasing offers in I can only
hurt the leader since it would decrease rents and not improve the probability of winning. The
leader wins with probability one, and makes a payoff v + w(n+ 1)/2.

Is there an equilibrium without WDS in which the leader only makes v? Suppose all followers
accept any offer pi ≥ 0 and reject any offer pi < 0. Suppose the leader offers 0 to a set I of
(n+1)/2 followers and p ∈ (−w, 0) to a set O of (n−1)/2 followers. Consider a follower i ∈ O. In
equilibrium, he gets w. By deviating and accepting the offer, he gets w+ pi < w. The followers
in I don’t have incentives to deviate either. In equilibrium the leader wins with probability one,
and then gets a payoff v. Given the strategy of the followers, she cannot profitably deviate. This
strategy profile thus is a SPE. Moreover, note that no player uses a weakly dominated strategy.

Both with discriminatory and non-discriminatory offers, there is an equilibrium in which the
leader makes a payoff v and an equilibrium in which the leader makes a payoff v + w(n+ 1)/2.

Note that the parenthesis in (67) is
(

1− δ
∏l
k=1 r(k)

)
< 1. Substituting,

v (q) < δq
[
v +

(
n+ 1

2

)
w

]
< v +

(
n+ 1

2

)
w

Since v < v(q) for w, δ large, it follows that in this case there is an equilibrium in the static game
in which the leader obtains a payoff that is larger than her payoff in the unique equilibrium with
sequential offers, but also equilibria in which the opposite holds.

Conclusion. For low δ and/or sufficiently small w, the leader’s payoff with simultaneous offers
is higher than in the sequential game. For w, δ large, instead, both with discriminatory and
non-discriminatory offers there is an equilibrium in which the leader would prefer simultaneous
to sequential offers, but also equilibria in which the opposite holds.
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