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Abstract

We quantify the effect of pre-vote deliberation on the decisions of US appellate

courts. We estimate a model of strategic voting with incomplete information in which

judges communicate before casting their votes, and then compare the probability of

mistakes in the court with deliberation with a counterfactual of no pre-vote commu-

nication. The model has multiple equilibria, and judges’ preferences and information

parameters are only partially identified. We find that there is a range of parameters

in the identified set in which deliberation can be beneficial. Specifically, deliberation

lowers the incidence of incorrect decisions when judges tend to disagree ex ante or their

private information is relatively imprecise; otherwise, it tends to reduce the effectiveness

of the court.
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1 Introduction

Deliberation is an integral part of collective decision-making. Instances of voting in legisla-

tures, courts, boards of directors, and academic committees are generally preceded by some

form of communication among its members, ranging from free to fully structured, and from

public to private or segmented. Does deliberation lead to better collective decisions? Or is

deliberation among committee members detrimental to effective decision-making?

On the face of it, the answer to this question seems straightforward: when committee mem-

bers have the opportunity to talk with one another they can share their private information

and reach a better collective decision. Consider a situation where jurors can vote in a straw

poll before the actual voting takes place.1 When jurors’ preferences are sufficiently similar,

there is an equilibrium in which all members communicate their private information in the

straw poll, and then vote unanimously in the binding vote in favor of the posterior-preferred

alternative. In this context, public communication can lead to an efficient outcome.

More generally, however, free-range communication among committee members might in-

stead be detrimental to decision-making, as individuals attempt to manipulate the beliefs of

other committee members to achieve better outcomes for themselves. In fact, as we will see,

allowing arbitrary communication possibilities among committee members can lead to worse

outcomes than what would be obtained were members to vote sans deliberation. Because

of the ambiguity of the theoretical results, evaluating the effect of deliberation on outcomes

becomes an empirical question, the answer to which depends on committee members’ traits,

and on the equilibrium strategies they play in the data.

In this paper we quantify the effect of deliberation on collective choices in the context of

criminal cases decided in the U.S. courts of appeals. Our empirical strategy is to structurally

estimate a model of voting with deliberation. This approach allows us to disentangle com-

mittee members’ preferences, information, and strategic considerations, and ultimately, to

compare equilibrium outcomes under deliberation with a counterfactual scenario in which

pre-vote communication is precluded.

We accommodate pre-vote deliberation among judges by considering communication equi-

libria of the game (Forges (1986), Myerson (1986); Gerardi and Yariv (2007)). Because the

incentive for any individual member to convey her information truthfully depends on her

expectations about how others will communicate, any natural model of deliberation will

have a large multiplicity of equilibria, which leads to partial identification of the structural

parameters characterizing judges’ preferences and quality of information. Accordingly, we

1As in Coughlan (2000).
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estimate an identified set for these parameters – a set of values of judges’ preference and

information parameters that are consistent with a mixture of equilibria generating the ob-

served vote distribution – using a two-step procedure that allows flexibly for characteristics

of the alternatives and the individuals.

The fundamental goal of this paper is to evaluate the effect of deliberation. To do this

we compare outcomes that would emerge with and without deliberation. In particular, we

focus on the probability that the court reaches an incorrect decision. The US appellate

courts’ task is to determine whether or not the law was applied correctly in the trial court.

Thus, the appellate court reaches a wrong decision when it overturns a correct decision by

the trial court, or when it upholds an incorrect decision by the trial court.

Our results show that deliberation can reduce the probability of incorrect decisions when

judges’ preferences are sufficiently heterogeneous or their private information is relatively

imprecise. In particular, we find that for a prior belief close to the frequency of overturning

in the data, the probability of mistakes in communication equilibria consistent with the

data is lower than in equilibria of the voting game without deliberation. In contrast, we

find that pre-vote communication increases the prevalence of mistakes in the court when

judges’ preferences are not too heterogeneous and when their private information is rela-

tively precise. In other words, deliberation can help for those points in the identified set for

which individuals tend to disagree ex ante and cannot do too well if voting independently;

otherwise, it tends to reduce the effectiveness of the court.

There are three parts to this result. One, pre-vote communication has the potential to lead

to bad equilibria, where the court fails to use the private information of its members to its

advantage. In these equilibria, judges vote against their own information because they infer

during committee deliberation that the information of other judges contradicts their own.

Two, in order to be consistent with the data, more heterogeneous courts also have to be

“better”, in the sense that judges must have more precise information and, for any given

level of quality, must shed off the worse equilibria. In other words, heterogeneous courts

can be rationalized as generating the observed voting data, but only if they are competent

and play equilibria in which they use their information effectively.

The third and final component is performance in the counterfactual of no deliberation.

This has two parts. First, we find that for preference and information parameters in the

estimated identified set (EIS), the set of equilibrium outcomes of the voting game without

deliberation are generally close to the best outcomes that can be achieved in any commu-

nication equilibrium, including equilibria not consistent with the voting data. Thus the

maximum potential gain from deliberation is generally low. Second, voting without delib-
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eration performs worst when judges’ private information is imprecise, or when the court is

very heterogeneous. It is in these instances when deliberation has a relatively large potential

to improve outcomes. The potential appears to be realized in our data. The comparison

shows that communication can, in fact, improve outcomes in these regions. However it

generally leads to higher error rates when judges are like-minded, or when the quality of

their private information is not too low, regardless of judges’ prior beliefs.

The rest of the paper is organized as follows. Section 2 contains institutional background,

and also summary statistics from the data which describe key features of the US appellate

courts. In section 3 we present a model of deliberative voting for appellate courts. Iden-

tification and estimation are discussed in Section 4. Section 5 presents the results. We

conclude in section 6. Proofs and supplementary materials are in the Online Appendix

(Iaryczower, Shi, and Shum (2016)).

2 US Appellate Courts: Data and Background

In our empirical analysis of deliberation, we focus on criminal decisions in the US appellate

courts. The appellate court setting is attractive for this analysis for two reasons. First,

courts of appeals are small committees, composed of only three judges. This allows us to

capture relevant strategic considerations in a relatively simple environment. Second, within

each circuit, judges are assigned to panels and cases on an effectively random basis. The

random assignment norm minimizes the impact of “case selection”, whereby appellants are

more likely to pursue cases in courts composed of more sympathetic judges.

The data are drawn together from two sources. The main source is the United States

Courts of Appeals Data Base (Songer (2008)). This provides detailed information about a

substantial sample of cases considered by courts of appeals between 1925 and 1996, including

characteristics of the cases, the judges hearing the case, and their votes. Among the roughly

16,000 cases in the full database, we restrict our attention to criminal cases, which make up

around 20% of the total. The case and judge-specific variables which we use in our analysis

are summarized in Table A.1 in the Online Appendix. Additional information for judges

involved in these decisions was obtained from the Multi-User Data Base on the Attributes

of U.S. Appeals Court Judges (Zuk, Barrow, and Gryski (2009)).

For each case, we include a dummy variable (“FedLaw”) for whether the case is prosecuted

under federal (rather than state) law, as well as dummy variables for the crime in each case.

These crime categories are based on the nature of the criminal offense in the case, and do

not exhaust the set of possible crimes, but instead constitute “common” issues, bundling
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a relatively large number of cases within each label. Thus “Aggravated” contains murder,

aggravated assault, and rape cases. “White Collar” crimes include tax fraud, and violations

of business regulations, etc. “Theft” includes robbery, burglary, auto theft, and larceny. The

“Narcotics” category encompasses all drug-related offenses. In addition to the nature of the

crime, we also include information about the major legal issue under consideration in the

appeal. In particular, we distinguish issues of Jury Instruction, Sentencing, Admissibility

and Sufficiency of evidence from other legal issues.

We also include three variables which describe the makeup of the judicial panel deciding

each case: an indicator for whether the panel is a Republican majority (“Rep. Majority”),

whether the panel contains at least one woman (“Woman on panel”), and whether there is a

majority of Harvard or Yale Law School graduates on the panel (“Harvard-Yale Majority”).

This latter variable is included to capture possible “club effects” in voting behavior; the

previous literature has pointed out how graduates from similar programs may share common

judicial views, and vote as a bloc.

Finally, we include four judge-specific covariates. “Republican” indicates a judge’s affiliation

to the Republican Party. “Yearsexp” measures the number of years that a judge has served

on the court of appeals at the time that he/she decides a particular case (this variable varies

both across judges and across cases). “Judexp” and “Polexp” measure the number of years

of judicial and political experience of a judge prior to his/her appointment to the appellate

court.

Since we are modeling the voting behavior on appellate panels, we distinguish between

judges’ votes for upholding (v = 0) versus overturning (v = 1) the decision of a lower court.

Thus, given the majority voting rule, among the eight possible vote profiles, there are four

which lead to an outcome of upholding the lower court’s decision – (0, 0, 0), (1, 0, 0), (0, 1, 0),

(0, 0, 1) – and four leading to overturning – (1, 1, 1), (1, 1, 0), (1, 0, 1) and (0, 1, 1). In Table

A.1 in the Online Appendix, we provide summary statistics for case and judge characteristics

broken down by the four categories of vote outcomes (unanimous to Overturn, Unanimous

to Uphold, Divided to Overturn and Divided to Uphold). As the table shows, the average

case and judge characteristics vary substantially between the four vote outcomes, suggesting

considerable variation in our dataset.

2.1 Institutional Features and Preliminary Data Analysis

An important component in any model of decision-making in the courts of appeals is the

information structure facing judges. The literature has essentially considered two ap-

proaches to modeling information in voting models: private-values “ideological” models,
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and common-value models. Because of the relevance of this assumption in our analysis,

here we explore this issue from an empirical standpoint. A consideration of the institu-

tional background as well as formal statistical tests suggest that we model the appellate

court as a common values environment.2

First, the formal description of the appellate courts’ task corresponds closely to a model

in which common values are predominant. The appeals process in the US federal judicial

system grants a losing party in a decision by a trial court (or district court) the right

to appeal the decision to a federal court of appeals. The 94 federal judicial districts are

organized into 12 regional circuits, each of which has a court of appeals. The appellate

court’s task is “to determine whether or not the law was applied correctly in the trial

court.” In fact, in order to win, the appellant “must show that the trial court made a legal

error that affected the decision in the case” (www.uscourts.gov).

A purely ideological model of decision-making in the courts seems simply unappealing in

this environment, as it would imply that judges are unresponsive to information regarding

errors in the trial court. In contrast, a common values model captures the fact that judges’s

decisions are based on whether a given situation – about which the judges have imperfect

information – occurred or not. Importantly, the notion of right and wrong we consider

is whether the appeals court correctly or incorrectly determined that the law was applied

correctly in the trial court; i.e, the state variable in the model is not interpreted as guilt or

innocence of the defendant but rather as whether the law was or not applied correctly in

the trial court.3

We complement the institutional perspective with a formal statistical test that exploits the

random assignment of judges to cases in the US courts of appeals. Our test build on two

observations. First, given random assignment of judges to cases, judges’ preferences could

vary across cases and judges, but should not vary with the characteristics of the other mem-

bers of the panel given observable case characteristics. Second, in the standard ideological

2In our framework, we assume that appellate judges’ decisions are not linked over time, conditional on the
case and judge-specific characteristics. This abstracts away from “career concerns”, through which judges’
behavior might change over time in response to incentives in the judicial career trajectory. To gauge the
importance of career concerns, we report in Table A.2 from the Online Appendix the differences in means
for previous political experience, previous judicial experience, and years of experience in the court between
dissenting vs. non-dissenting judges, where dissenting judges are the ones who voted differently from the
majority. The results show that the experience variables do not appear to be significantly different across
dissenting judges and non-dissenting judges, which suggests that career concerns may not be an important
determinant of behavior, at least in the subset of cases we study.

3Our underlying assumption is then that if all relevant facts and law were known, judges would reasonably
agree on whether the law was or was not applied correctly in the trial court. We believe that the US criminal
appellate process and the kinds of reasoning required of an appellate court make this a reasonable assumption.
In Section 5.5 we discuss this in more detail, paying particular attention to the distinction between questions
of fact and questions of law, and provide a robustness exercise that focuses on a restricted sample of cases.
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model considered in political economy, a judge’s vote should similarly not be correlated

with his/her panel members’ characteristics given observable case characteristics.4 This

suggests a simple test for private vs interdependent values: we can regress a given judge’s

vote on case observables, the judge’s own observables and the other judges’ observables. If

the other judges’ variables are significant, we reject the private values hypothesis.

The presumption that judges are assigned to panels in an effectively random manner follows

from an examination of institutional details in the court. The particular assignment proce-

dures vary from circuit to circuit, with some circuits using explicitly random assignments

(via random number generators) and others incorporating additional factors as dictated by

practical considerations (e.g., availability), but the general intent is to not manipulate the

assignment of judges to cases:

“Judge assignment methods vary. The basic considerations in making assign-
ments are to assure equitable distribution of caseloads and avoid judge shopping.
By statute, the chief judge of each district court has the responsibility to enforce
the court’s rules and orders on case assignments. Each court has a written plan
or system for assigning cases. The majority of courts use some variation of a
random drawing.” 5

To assess the validity of random assignment among the cases in our dataset, in Table 1

we report coefficients from regressions of judge characteristics on case covariates. Random

assignment should imply that case covariates have little predictive power on judge charac-

teristics. Indeed, the results in Table 1 show almost no statistically significant coefficients.

None of the regressions has overall significance at even 10% level, confirming that judges in

these cases appear to be assigned randomly.

Having established the random assignment of judges to cases, we move on to the test

proper. We implement this test by running linear regressions on our data, in which the

outcome variable is whether a given judge voted to overturn(=1) or uphold(=0), and the

explanatory variables include characteristics of the other judges on the committee. Table 2

shows the regression under several specifications. We find that the private values hypothesis

is indeed rejected: across all the specifications, we find strong evidence that the makeup of

a committee does affect the voting behavior of committee members; across all specifications,

the committee variables are (jointly) significant in an F-test with a p-value less than 8%.

As discussed above, this evidence supports our modeling of the appellate court scenario as

one involving interdependent values, rather than involving independent private values. Ac-

4This would not be the case if judges had intertemporal agreements (e.g., logrolling), as it could be the
case in legislatures, but these agreements seem unusual in our context.

5http://www.uscourts.gov/Common/FAQS.aspx.

6



Table 1: Random assignment? Regressions of judge on case characteristics

Case Average Judge Characteristics:
Covariates: Republican Yrsexp Judexp Polexp Non-white Female

Federal −0.024∗ 0.386∗ 0.044 −0.004 0.005 0.006
Aggravated −0.038∗∗ 0.313 0.381# −0.194 −0.000 0.007

White Collar −0.007 −0.203 0.029 0.143 −0.008 −0.004
Theft −0.015 0.184 −0.153 0.128 −0.007 0.003

Narcotics −0.024# 0.057 −0.298# 0.080 −0.000 −0.002

Jury Instruction −0.005 0.060 −0.084 0.082 −0.002 0.005
Sentencing −0.012 −0.189 −0.054 −0.078 0.013∗ 0.002

Admissibility −0.018∗ −0.039 0.267∗ −0.038 −0.005 0.006
Sufficency of evidence 0.006 0.218 0.111 0.008 0.002 −0.009∗∗

Overall significance
(p-value) 0.194 0.630 0.258 0.390 0.397 0.205

Note: All regressions include constant terms (not reported for brevity), and fixed effects for the

interactions of year*circuit. ***/**/*/#: significant at 1/5/10/15% . Overall significance is the

p-value of the F-test for the joint significance of all case characteristics. Sample size = 3239.

cordingly, in the next section, we introduce a common value specification which is prominent

in the existing literature on committee voting and deliberation (Austen-Smith and Banks

(1996), Feddersen and Pesendorfer (1997, 1998) and deliberation (Coughlan (2000), and

Austen-Smith and Feddersen (2005, 2006), Gerardi and Yariv (2007)) to address important

policy and design counterfactuals raised in this literature, such as the informational benefits

or efficiencies from deliberation.6

3 A Model of Voting in US Appellate Court Committees

Based on the institutional features and data patterns discussed in the foregoing section, we

map out a model of committee decision-making and deliberation in appellate court panels.

Our basic model builds on Feddersen and Pesendorfer (1998), by allowing for heterogeneous

biases and quality of information (all of which are public information). To this we add

deliberation as in Gerardi and Yariv (2007), considering communication equilibria.7

6See Wan and Xu (2010), Xu (2014) and Grieco (2014) for analyses of non-voting games with interde-
pendent, but non-common value, types. Stasser and Titus (1985), Fischman (2011, 2015), Gole and Quinn
(2014) consider non-common values based models of committee decision-making in which agents may have
non-informational or behavioral motives. The role of deliberation in such environments is less clear, and for
that reason we follow most of the existing deliberation literature and focus on common value models in this
paper.

7An attractive and powerful rationale for focusing on the set of communication equilibria is that the set
of outcomes induced by communication equilibria coincides with the set of outcomes induced by sequential

7



Table 2: Ordinary Least Squares Regressions of Vote on Case, Judge, and Committee
Variables

Spec 1 Spec 2 Spec 3 Spec 4

Committee variables
(sum of panel mates’ characteristics):

Republican dummy −0.017# −0.017#

Political experience (in decades) 0.024∗ 0.026∗ 0.022∗

Female dummy −0.050# −0.054∗

Joint significance of committee variables
(p-value of F Test) 0.048∗∗ 0.064∗ 0.076∗ 0.050∗∗

Control variables:
Judge characteristics Yes Yes Yes No

Case observables Yes Yes Yes Yes
Circuit*Year fixed effects Yes Yes Yes Yes

Note: Case variables controlled include dummies for crime types (federal, aggravate, white
collar, theft, narcotic) and dummies for reason of appeal (jury instruction, sentencing, admissi-
bility, sufficiency of evidence). Judge characteristics controlled include dummies for republican,
nonwhite, and female, as well as three experience measures (appeal court experience, judicial
experience, and political experience). ***/**/*/#: significant at 1/5/10/15% . Significance
levels are computed with errors clustered by both judge and committee. We use the two-way
clustering procedure in Cameron, Gelbach, and Miller (2011). Sample size = 9717.

There are three judges, i = 1, 2, 3. Judge i votes to uphold (vi = 0) or overturn (vi = 1)

the decision of the lower court. The decision of the court, v ∈ {0, 1}, is that of the majority

of its members. That is, if we let ~v denote the vector (v1, v2, v3)′ (written as v1v2v3 below

whenever it does not cause confusion), and let the court’s decision be denoted v = ψ(~v),

then ψ(~v) = 1 if and only if
∑

i vi ≥ 2.

In line with our previous discussion, we assume that there is a correct decision in each case,

which is modeled as a hidden state variable ω ∈ {0, 1} reflecting whether errors have been

committed at trial (ω = 1) or not (ω = 0). The realization of this random variable ω in any

given case is only imperfectly observed by the judges in the court of appeals.

Judge i suffers a cost πi ∈ (0, 1) when the court incorrectly overturns the lower court (v = 1

when ω = 0) and of (1−πi) when it incorrectly upholds the lower court (v = 0 when ω = 1).

The payoffs of v = ω = 0 and v = ω = 1 are normalized to zero. Thus given information I,

judge i votes to overturn if and only if Pri(ω = 1|I) ≥ πi. Accordingly, πi can be thought

of as the hurdle imposed by judge i on the amount of information that must be available

about facts constituting errors in trial for her to be willing to overturn the decision of the

equilibria of any cheap talk extension of the voting game. Coughlan (2000), and Austen-Smith and Feddersen
(2005, 2006) introduce an alternative approach in this context, extending the voting game with one round of
public deliberation. For other models of deliberation, see Li, Rosen, and Suen (2001), Doraszelski, Gerardi,
and Squintani (2003), Meirowitz (2006), and Landa and Meirowitz (2009), Lizzeri and Yariv (2011).
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lower court. Thus, πi > 1/2 reflects a positive hurdle (a bias towards upholding), while

πi < 1/2 reflects a negative hurdle (a bias towards overturning).8

Confronted with a case, each appellate judge has common prior beliefs ρ ≡ Pr(ω = 1),

and observes a private signal ti ∈ {0, 1} for i = 1, 2, 3 that is imperfectly correlated with

the truth; i.e., Pr(ti = k|ω = k) = qi > 1/2 for k = 0, 1. The parameter qi captures

the informativeness of i’s signals.9 The judges’ signals are independent from each other

conditional on ω. For convenience, we let θ ≡ (ρ, ~q).

In the absence of deliberation, this setting describes a voting game G, as in Feddersen

and Pesendorfer (1998). We extend this model to allow for pre-vote deliberation amongst

the judges – that is, for judges to discuss the case with each other, and potentially to

reveal their private information to each other. Following Gerardi and Yariv (2007), we

model deliberation by considering equilibria of an extended game in which judges exchange

messages after observing their signals and before voting. In particular, we consider a cheap

talk extension of the voting game that relies on a fictional mediator, who helps the judges

communicate. In this augmented game, judges report their signals ~t to the mediator, who

then selects the vote profile ~v with probability µ(~v|~t), and informs each judge of her own

vote. The judges then vote. A communication equilibrium is a sequential equilibrium of

this cheap talk extension in which judges (i) convey their private information truthfully to

the mediator, and (ii) follow the mediator’s recommendations’ in their voting decisions.10

These define two sets of incentive compatibility conditions, which we formally describe next

as the “deliberation stage” and “voting stage” constraints, respectively.

Voting Stage. At the voting stage, private information has already been disclosed to the

mediator. Still the equilibrium probability distributions µ(·|~t) over vote profiles ~v must be

such that each judge i wants to follow the mediator’s recommendation vi. Hence we need

that for all i = 1, 2, 3, for all vi ∈ {0, 1}, and for all ti ∈ {0, 1},∑
t−i

p(t−i|ti; θ)
∑
v−i

[
ui(ψ(vi, v−i),~t)− ui(ψ(1− vi, v−i),~t)

]
µ(~v|~t) ≥ 0, (3.1)

8In the estimation, we will allow the biases πi of each judge i to vary with case-specific and individual-
specific characteristics. The biases that judges can have in any given type of case can reflect a variety of
factors, inducing a non-neutral approach to this case, such as ingrained theoretical arguments about the law,
personal experiences, or ideological considerations.

9Assuming qi > 1/2 is without loss of generality, because if qi < 1/2 we can redefine the signal as 1− ti.
The assumption that the signal quality does not depend on ω is made only for simplicity.

10Note that in equilibrium players do not necessarily infer the information available to the mediator.
Thus, the requirement that players report truthfully to the mediator does not imply that players will re-
port truthfully to the other players in a given unmediated communication protocol implementing the same
outcomes.
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where as usual t−i ≡ (tj , tk) and v−i ≡ (vj , vk) for j, k 6= i. Here p(t−i|ti; θ) denotes the

conditional probability mass function of t−i given ti, and ui(ψ(~v),~t) denotes the utility of

judge i when the decision is ψ(~v) and the signal profile is ~t. Note that ui(ψ(vi, v−i),~t) −
ui(ψ(1−vi, v−i),~t) = 0 whenever v−i /∈ Pivi ≡ {(vj , vk) : vj 6= vk}. Then (3.1) is equivalent

to (3.2) (for vi = 1) and (3.3) (for vi = 0) for i = 1, 2, 3 and for all ti ∈ {0, 1}:

∑
t−i

p(t−i|ti; θ)
[
pω(1|~t; θ)− πi

] ∑
v−i∈Pivi

µ(1, v−i|~t) ≥ 0, and (3.2)

∑
t−i

p(t−i|ti; θ)
[
πi − pω(1|~t; θ)

] ∑
v−i∈Pivi

µ(0, v−i|~t) ≥ 0, (3.3)

where pω(ω|~t; θ) denotes the conditional probability mass function of ω given ~t. There are

therefore 12 such equilibrium conditions at the voting stage.

Deliberation Stage. At the deliberation stage, communication equilibria require that

judges are willing to disclose their private information truthfully to the mediator, antici-

pating the outcomes induced by the equilibrium probability distributions µ(·|~t) over vote

profiles ~v. This includes ruling out deviations at the deliberation stage that are profitable

when followed up by further deviations at the voting stage. To consider this possibility we

define the four “disobeying” strategies:

τ1(vi) = vi : always obey

τ2(vi) = 1− vi : always disobey

τ3(vi) = 1 : always overturn

τ4(vi) = 0 : always uphold

We require that for all i = 1, 2, 3, all ti ∈ {0, 1}, and τj(·), j = 1, 2, 3, 4:∑
t−i

p(t−i|ti; θ)
∑
v

[
ui(ψ(~v),~t)µ(~v|ti, t−i)− ui(ψ(τj(vi), v−i),~t)µ(~v|1− ti, t−i)

]
≥ 0 (3.4)

There are therefore 24 such equilibrium conditions at the deliberation stage.

For any given (θ, ~π), the conditions (3.2),(3.3), and (3.4) characterize the set of communi-

cation equilibria M(θ, ~π); i.e.,

M(θ, ~π) = {µ ∈M : (θ, ~π, µ) satisfies (3.2), (3.3) and (3.4)}, (3.5)

whereM is the set of all possible values that µ can take, and it can be conveniently thought

of as the set of 8 × 8 dimensional matrices whose elements lie in [0, 1] and each row sums
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to one. Note that M(θ, ~π) is convex, as it is defined by linear inequality constraints on µ.

Remark 3.1 (Robust Communication Equilibria). Note that for given vi, the vote profiles in

which the other judges vote unanimously to overturn or uphold do not enter the incentive

compatibility conditions at the voting stage. Thus, without any additional refinement, the

set of communication equilibria includes strategy profiles in which some members of the

court vote against their preferred alternative only because their vote cannot influence the

decision of the court. These include not only strategy profiles µ that put positive probability

only on unanimous votes, but also profiles in which i votes against her preferred alternative

only because conditional on her signal and her vote recommendation she is sure – believes

with probability one – that her vote is not decisive. Consider the example in Table 3.

Table 3: A Non-Robust Communication Equilibrium for ρ = 0.1 and πi = 0.3, qi = 0.6 for
i = 1, 2, 3. For each row ~v and column ~t, the entry gives µ(~v|~t).
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The strategy profile in Table 3 is a communication equilibrium for ρ = 0.1, and πi =

0.3, qi = 0.6 for i = 1, 2, 3. However, judge 1 votes to overturn with positive probability

even if Pr(ω = 1|~t) < π for all ~t. This in spite of the fact that non-unanimous vote profiles

are played with positive probability. The result is due to the fact that conditional on t1 = 0

(columns 5 to 8) and v1 = 1 (rows 1 to 4), judge 1 believes that either ~v = (1, 0, 0) or

~v = (1, 1, 1) are played. As a result, her vote is not decisive in equilibrium, and 1 is willing

to vote to overturn. The same is true in this example conditional on t1 = 1. A similar logic

holds for judges 2 and 3.

Because these equilibria are not robust to small perturbations in individuals’ beliefs about

how others will behave, we rule them out. To do this, we require that each individual best

responds to beliefs that are consistent with small trembles (occurring with probability η) on

equilibrium play, so that all vote profiles have positive probability after any signal profile.

Formally, in all equilibrium conditions – at both the voting and deliberation stage – we
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substitute Pr(~v|~t) in place of µ(~v|~t), where for any ~t and ~v,

Pr(~v|~t) =
∑
~̂v

µ(~̂v|~t)
3∏
j=1

(1− η)v̂j=vjηv̂j 6=vj

 .
The η we use in the empirical section is 0.01.11

Adverse Communication. Having eliminated non-robust equilibria, we know that judges’

voting decisions will reflect their posterior beliefs after deliberation. In fact, provided that∑
t−i

∑
v−i∈Pivi µ((1, v−i)|(ti, t−i)) Pr(t−i|ti; (~q, ρ)) > 0, the conditions (3.2) can be written

as

Pr(ω = 1|vi = 1, ti, P iv
i; (~q, ρ, µ)) ≥ πi;

i.e., conditional on her vote vi, signal ti, and on being pivotal in the court’s decision, judge

i prefers to overturn the decision of the lower court. Similarly conditions (3.3) boil down

to Pr(ω = 1|vi = 0, ti, P iv
i; (~q, ρ, µ)) ≤ πi. It follows that if communication is to lead to

inferior outcomes, it has to be through judges’ beliefs after deliberation. The question then

is: how much can deliberation influence rational judges’ beliefs?

As it turns out, the answer is “quite a lot”. We illustrate this with an example. Let

π1 = 0.25, π2 = π3 = 0.6, ρ = 1/2, and suppose that qi = 0.90 for i = 1, 2, 3; i.e.,

judge 1 is biased towards overturning the lower court, while judges 2 and 3 are biased

towards upholding the decisions of the lower court, and judges have uninformative priors

and relatively accurate private information. Table 4 describes a particular communication

equilibrium µ̃.12 This equilibrium is of interest here because it leads to incorrect decisions

with high probability, even when q = 0.9. Consider for example column 2, corresponding

to ~t = 101. While the probability that the decision should be overturned given ~t = 101

is fairly large – i.e., Pr(ω = 1|~t = 101)) = 0.9 – in equilibrium the court overturns when

~t = 101 roughly one fourth of the times: Pr(v = 1|~t = 101) = 0.26.

To understand how this happens, consider the problem of judge 1. Note that judge 1 is

predisposed to overturn, as π1 = 0.25. Nevertheless, in equilibrium she sometimes votes to

uphold, even after observing a signal that errors have been made in trial. Now, consider

judge 1’s equilibrium inference when in equilibrium she votes to uphold (v1 = 0), given

that she received a signal in favor of overturning, t1 = 1. Because she is supposed to vote

11To evaluate the robustness of our results, we replicate the analysis for η = 0.001 and η = 0.000001. The
results are qualitatively unchanged.

12As in Table 3, the cell corresponding to row ~v and column ~t gives the equilibrium probability that ~v is
played given a signal realization ~t; i.e., µ(~v|~t). Thus, for example, µ(100|100) = 0.044.
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Table 4: Equilibrium consistent with the data with large error rates, for q = 0.90, π1 =
0.25, π2 = π3 = 0.6.

(1,0,0) (1,0,1) (1,1,0) (1,1,1) (0,0,0) (0,0,1) (0,1,0) (0,1,1) Pr(v)
(1,0,0) 0.044 0.110 0.321 0.000 0.000 0.066 0.023 0.000 0.025
(1,0,1) 0.000 0.023 0.141 0.002 0.006 0.006 0.029 0.160 0.019
(1,1,0) 0.073 0.003 0.044 0.008 0.000 0.003 0.081 0.003 0.012
(1,1,1) 0.187 0.115 0.080 0.254 0.256 0.252 0.150 0.028 0.223
(0,0,0) 0.351 0.604 0.403 0.736 0.739 0.537 0.433 0.735 0.676
(0,0,1) 0.082 0.021 0.000 0.000 0.000 0.136 0.170 0.000 0.018
(0,1,0) 0.263 0.000 0.011 0.000 0.000 0.000 0.113 0.000 0.017
(0,1,1) 0.000 0.124 0.000 0.000 0.000 0.000 0.000 0.074 0.009

Pr(v=1|t) 0.255 0.259 0.259 0.258 0.256 0.255 0.255 0.259
Pr(w=1|t) 0.100 0.900 0.900 0.999 0.001 0.100 0.100 0.900
Pr(t) 0.045 0.045 0.045 0.365 0.365 0.045 0.045 0.045

Signal<Profile

Vote<Profile

zero, judge 1 can rule out (put probability zero on) the vote profile ~v = 100, and thus the

entire first row of the matrix. Similarly, she can rule out rows 2, 3 and 4. Because she

knows that she received a 1 signal, she can rule out the possibility that ~t = 000 (column 5).

Similarly, she can rule out columns 6, 7 and 8. Because only events in which she is pivotal

to the decision are payoff consequential, she can rule out ~v = (0, 0, 0) and ~v = (0, 1, 1) (rows

5 and 8). We are thus left with the bold cells in the table. But this indicates that the

posterior probability that the other two judges received a 0 signal is considerably high. In

fact, Pr(t2 = 0, t3 = 0|v1 = 0, t1 = 1, P iv1) is given by

[µ(001|100) + µ(010|100)] Pr(~t = 100)∑
(t2,t3)(µ(001|1, t2, t3) + µ(010|1, t2, t3)) Pr(~t = (1, t2, t3))

=
[0.082 + 0.263]0.045

0.017
= 0.915

Thus, the equilibrium inference about the information of other judges ends up overwhelm-

ing her own private information, leading to a posterior probability that errors were not

committed at trial (i.e., should uphold) of only 0.17. (The same logic applies to judges 2

and 3, leading to a posterior probability of exactly 0.60 for both judges 2 and 3, consistent

with equilibrium.)

The example illustrates that after all incentive constraints are taken into account, deliber-

ation can still have a powerful effect on the beliefs of rational, fully Bayesian judges. The

result has the flavor of Kamenica and Gentzkow (2011), albeit in a different strategic setting.

The two games have many differences of course, as here there are three privately informed

players, who are both senders and receivers of information, while Kamenica and Gentzkow

consider a two player game, where an uninformed sender can choose the information service

available to a single decision-maker. Crucially, however, choosing a communication equilib-
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rium µ effectively entails choosing an information service for each judge (as receiver) subject

to the equilibrium constraints assuring that each player reports its information truthfully

(to the mediator). While a communication equilibrium adds constraints to manipulation of

beliefs, the example illustrates that there is still room for players to persuade one another

through deliberation.

The fact that deliberation can lead to better or worse outcomes than the corresponding

game without deliberation implies that quantifying the effect of deliberation is ultimately

an empirical question. In the next sections we develop an empirical framework that allows

us to tackle this issue.

4 From Model to Data

The structural estimation of voting models with incomplete information is a relatively re-

cent endeavor in empirical economics. This paper extends several recent papers examining

voting behavior in committees with incomplete information and common values (Iaryczower

and Shum, (2012b, 2012a); Iaryczower, Lewis, and Shum (2013), Hansen, McMahon, and

Velasco Rivera (2013)).13 In those papers committee members are assumed to vote without

deliberating prior to the vote. This paper takes the analysis one step further, by allow-

ing explicitly for communication among judges. As we show below, this extension is far

from a trivial one, as the deliberation stage introduces multiple equilibria, rendering the

conventional estimation approach inapplicable.

In terms of estimation and inference, this paper draws upon recent-developed tools from

the econometric literature on partial identification (eg. Chernozhukov, Hong, and Tamer

(2007), Beresteanu, Molchanov, and Molinari (2011)). A closely-related paper is Kawai and

Watanabe (2013), who study the partial identification of a strategic voting model using

aggregate vote share data from Japanese municipalities.14

13Iaryczower, Katz, and Saiegh (2013) use a similar approach to study information transmission among
chambers in the U.S. Congress. For structural estimation of models of voting with private values and
complete information see Poole and Rosenthal (1985, 1991), Heckman and Snyder (1997), Londregan (1999),
Clinton, Jackman, and Rivers (2004) – for the US Congress– and Martin and Quinn, (2002, 2007) – for the
US Supreme Court. Degan and Merlo (2009), De Paula and Merlo (2009), and Henry and Mourifie (2011)
consider nonparametric testing and identification of the ideological voting model.

14 While we are not aware of other papers analyzing deliberation with field data in a setting similar to the
one considered here, some recent papers have analyzed deliberation in laboratory experiments. Guarnaschelli,
McKelvey, and Palfrey (2000), using the straw poll setting of Coughlan (2000), show that subjects do
typically reveal their signal (above 90% of subjects do so), but that contrary to the theoretical predictions,
individuals’ private information has a significant effect on their final vote. Goeree and Yariv (2011) show
that when individuals can communicate freely, they typically disclose their private information truthfully
and use public information effectively (as in Austen-Smith and Feddersen (2005), voters’ bias parameters
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4.1 Partial identification of model parameters

The immediate goal of the estimation is to recover the signal/state distribution parameters,

θ, and the judges’ preference vector ~π. The information used to recover these parameters

is the distribution of the voting profiles, pv(~v), which can be identified from the data. Here

we define the sharp identified set for the model parameters.15 The sharp identified set of

{θ, ~π} is the set of parameters that can rationalize pv(~v) under some equilibrium selection

mechanism λ – a mixing distribution over µ ∈M(θ, ~π). In other words, the sharp identified

set A0 is the set of (θ, ~π) ∈ Θ× [0, 1]3 such that there exists a λ that satisfies

pv(~v) =

∫
µ∈M(θ,~π)

λ(µ)
∑
~t

µ(~v|~t)p(~t; θ)dµ. (4.1)

However, because the set M(θ, ~π) of communication equilibria is convex, whenever there

exists a mixture λ satisfying (4.1) there exists a single equilibrium µ ∈ M(θ, ~π) such that

pv(~v) =
∑
~t µ(~v|~t)p(~t; θ).16 Thus A0 boils down to

A0 = {(θ, ~π) ∈ Θ× [0, 1]3 : ∃µ ∈M(θ, ~π) s.t. pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)}. (4.2)

We will also introduce the following set B0:

B0 = {(θ, ~π, µ) ∈ B : µ ∈M(θ, ~π) and pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)}, (4.3)

where B = Θ× [0, 1]3×M andM is the set of µ – 8×8 dimensional matrices, the elements

of which are positive and each row sums to 1. The set B0 is the sharp identified set of

{θ, ~π, µ}, where µ is the true mixture voting assignment probability. The identified set A0

can be considered as the projection of B0 onto its first dθ + 3 dimensions, corresponding to

the parameters (θ, ~π).

are private information, so individuals are identical ex ante). For other experimental results on deliberation,
see McCubbins and Rodriguez (2006) and Dickson, Hafer, and Landa (2008).

15The sharpness of the identified set is in the sense of Berry and Tamer (2006), Galichon and Henry (2011),
Beresteanu, Molchanov, and Molinari (2011). However, our estimation approach differs quite substantially
from those papers.

16 This fact implies an observational equivalence between a unique communication equilibrium being played
in the data, versus a mixture of such equilibria. Sweeting (2009) and De Paula and Tang (2012) discuss
the non-observational equivalence between mixture of equilibria and a unique mixed strategy equilibria in
coordination games.
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Identification in a Symmetric Model: Intuition. Before proceeding on to the esti-

mation of the identified set, we provide some intuition for the identification of the model

parameters by analyzing a stripped-down model in which the three judges are symmetric,

in the sense that they have identical preferences and quality of information. That is, the

preference parameters are identical across judges (π1 = π2 = π3 = π) and so are the sig-

nal accuracies (q1 = q2 = q3 = q). In this simple model, there are only three parameters

(ρ, q, π).

In Figure 1 we show the pairs (π, q) in the identified set for four different hypothetical

vote profile vectors and given values of the common prior ρ. The figure on the upper left

panel plots the identified set for ρ = 0.5 and a uniform distribution of vote profiles, i.e.,

pv(~v) = 1/8 for all ~v. Because of the symmetry of the vote profile, the identified set is

symmetric with respect to the π = 0.5 line. Moreover, the set of preference parameters π in

the identified set for each value of q is increasing in q. Thus, high ability judges can be very

predisposed towards either upholding (requiring considerably more information supporting

that mistakes were made at trial to overturn) or overturning (requiring considerably more

information supporting that mistakes were not made at trial to uphold) and still play

equilibria consistent with the data. However, low ability judges must be highly malleable

– willing to uphold or overturn even with little information that errors in trial have been

committed or not – if they are to be consistent with the data.

The figure on the top right plots the pairs (π, q) in the identified set for the uniform dis-

tribution over vote profiles and a prior probability of ρ = 0.1 that mistakes were made at

trial. Because the prior is very favorable towards upholding the decision of the lower court,

only judges who are very biased towards overturning (π << 1/2) – who require a high

certainty that errors in trial have not been committed in order to uphold – can vote in a

way consistent with the data. This is because for these types of judges, the opposite bias

and priors compensate each other, effectively making them equivalent to a non-biased judge

with uniform priors over the state. On the other hand, judges who are already predisposed

towards upholding (π >> 1/2) only become more extreme once the prior is taken into

consideration, and thus are not inclined to vote to overturn.

The figures in the lower panel return to ρ = 0.5, but consider non-uniform distributions of

vote profiles. In the lower-left figure only unanimous votes have positive probability, and

the probability of overturning is pv(1, 1, 1) = 0.9, while pv(0, 0, 0) = 0.1. As in the first

figure, low ability judges must be willing to uphold or overturn with even little information

that errors in trial have been committed or not if they are to be consistent with the data.

However, high ability judges must be biased towards overturning (must demand a high

certainty that errors in trial have not been committed in order for them not to overturn),
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pv((1, 1, 1)) = 0.9, pv((0, 0, 0)) = 0.1, ρ = 0.5
~v : split majority to overturn: pv(~v) = 1/4
~v : split majority to uphold: pv(~v) = 1/12

ρ = 0.5

Figure 1: Identification of Second-Stage Parameters: Computational Examples. Figures

present computations from a simplified model in which the preference parameters are assumed

identical across judges: πi = π,∀i. We graph the identified set for the parameters (π, q) under four

different sets of the vote probabilities p(~v) and the prior parameter ρ. In each graph, the X-axis

ranges over values of q, and the y-axis ranges over values of the common preference parameter π.

Additional details and discussion are provided in the text.
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and increasingly so the higher the information precision. The same result holds in the

lower right figure, where also overturning is more likely, but only non-unanimous votes have

positive probability. In this case, however, more malleable judges are consistent with the

data for any given level of q. Note that in all figures, π → ρ as q → 1/2. This is because as

signals become less informative, in order to get a judge to vote for both alternatives some

of the time, the judge has to be increasingly closer to being indifferent between voting one

way or the other, after bias and prior beliefs are taken into consideration.

4.2 Estimation

To study the estimation of the identified set, we define the criterion function

Q(θ, ~π;W ) = min
µ∈M(θ,~π)

Q(θ, ~π, µ;W ) where

Q(θ, ~π, µ,W ) = (~pv − Pt(θ)~µ)
′
W (~pv − Pt(θ)~µ)

′
, (4.4)

and where ~pv = (pv(111), pv(110), pv(101), pv(100), pv(010), pv(001), pv(000))
′
, ~µ is a 64−

vector whose 8k+1’th to 8k+8’th coordinates are the (k+1)’th row of µ(~v|~t) for k = 0, ..., 7,

Pt(θ) = p(~t, θ)
′ ⊗ [I7|07] and W is a positive definite weighting matrix specified later.

We estimate the vote probabilities by the empirical frequencies of the vote profiles:

p̂v(~v) =
1

n

n∑
l=1

1(Vl = ~v), (4.5)

where Vl is the observed voting profile for case l and n is the sample size. Assuming that

the cases are i.i.d., by the law of large numbers, p̂v(~v) →p pv(~v) for all ~v ∈ V, where

V = {111, 110, 101, 100, 010, 001, 000}. One can define a sample analogue estimator for A0:

Ân = argmin(θ,~π)∈Θ×[0,1]3Qn(θ, ~π,Wn), (4.6)

where Wn is an estimator of W and Qn is defined like Q except with ~pv replaced by its

sample analogue ~̂pv. The set Ân is the estimated identified set (EIS) that we compute using

the data.

To compute Ân, one can follow steps below:
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(1) For each (θ, ~π), compute Qn(θ, ~π;Wn) by solving the quadratic programming problem:

Qn(θ, ~π;Wn) = min
~µ∈[0,1]64

(~̂pv − Pt(θ)~µ)
′
Wn(~̂pv − Pt(θ)~µ)

′

s.t.(3.2), (3.3) and (3.4)

k+8∑
j=k+1

~µj = 1, k = 0, ..., 7. (4.7)

(2) Repeat (1) for many grid points of (θ, ~π) ∈ Θ× [0, 1]3,

(3) Form Ân as the set of minimizers of Qn(θ, ~π;Wn) among the grid points.

The following theorem establishes the consistency of Ân with respect to the Hausdorff

distance:

dH(Ân,A0) = max

{
sup

(θ,~π)∈Ân

inf
(θ∗,~π∗)∈A0

||(θ, ~π)− (θ∗, ~π∗)||, sup
(θ∗,~π∗)∈A0

inf
(θ,~π)∈Ân

||(θ, ~π)− (θ∗, ~π∗)||

}
.

(4.8)

In general partially identified models, the sample analogue estimators for the identified sets

are not typically consistent with respect to the Hausdorff distance (see e.g. Chernozhukov,

Hong, and Tamer (2007)). Our problem has a special structure that guarantees consistency

under mild conditions.

Theorem 1. Suppose that Wn →p W for some finite positive definite matrix W and Θ

is compact. Also suppose that cl(int(BE) ∩ B0) = B0, where BE = {(θ, ~π, µ) ∈ B : µ ∈
M(θ, ~π)}.17 Then, dH(Ân,A0)→p 0 as the sample size n goes to infinity.

In the results below we will also consider the construction of confidence sets for the partially

identified model parameters; details for this procedure are given in Section B of the Online

Appendix.

4.3 Handling Covariates – Two-step Estimation

Here we describe a two-step estimation approach for this model, which resembles the two-

step procedure in Iaryczower and Shum (2012b). This is a simple and effective way to

17This is a weak assumption that is satisfied if each point in B0 is either in the interior of BE or is a limit
point of a sequence in the interior of BE . Unlike seemingly similar assumptions in the literature, it does not
require the identified set B0 to have nonempty interior. In this paper, numerical calculation of the identified
sets for different values of ~pv suggests that this assumption holds.
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deal with a large number of covariates. Throughout, we let Xt denote the set of covariates

associated with case t, including the characteristics of the judges who are hearing case t.

In the first step, we estimate a flexible “reduced-form” model for the conditional probabili-

ties pv(~v|X) of the vote outcomes given X.18 Specifically, we parameterize the probabilities

of the eight feasible vote profiles using an 8-outcome multinomial logit model.19 Letting i

index the eight vote profiles, we have

pv(~vi|X;β) =
exp(X ′iβi)

1 +
∑7

i′=1 exp(Xi′βi′)
, i = 1, . . . , 7;

pv(~v8|X;β) =
1

1 +
∑7

i′=1 exp(Xi′βi′)
,

(4.9)

where ~v1, ..., ~v7 are the 7 elements in V and ~v8 = 011.20 Because the labeling of the three

judges is arbitrary, it makes sense to impose an exchangeability requirement on our model of

vote probabilities. In particular, the conditional probability of a vote profile (v1, v2, v3) given

case characteristics X and judge covariates (Z1, Z2, Z3) should be invariant to permutations

of the ordering of the three judges; i.e., the vote probability P (v1, v2, v3|X,Z1, Z2, Z3) should

be exchangeable in (v1, Z1), (v2, Z2) and (v3, Z3), for allX. These exchangeability conditions

imply restrictions on the coefficients on (X,Z1, Z2, Z3) in the logit choice probabilities, which

greatly reduce the dimension of the unknown parameter.21

Given the first-stage parameter estimates β̂ =
(
β̂1, . . . , β̂7

)′
, we obtain estimated vote

probabilities p̂ =
(
p(~v1|X; β̂), . . . , p(~v7|X; β̂)

)′
. In the second stage, we use the estimated

voting probability vector p̂ to estimate the identified set of the model parameters (θ, ~π)

using arguments from the previous section. This estimation procedure allows the underlying

18This approach is commonplace in recent empirical applications of auction and dynamic game models
(see for example Ryan (2012), and Cantillon and Pesendorfer (2006)).

19The logit specification is convenient because it allows us to easily incorporate the exchangeability re-
strictions, as discussed below; also, it is capable of generating any conditional probability distribution of the
discrete outcomes, and thus is not restrictive. Finally, since we are using the multinomial logit model simply
as a reduced-form description of the conditional probabilities of the vote outcomes, and not as a structural
model of an agent’s choice problem, the “red bus/blue bus” critique does not apply.

20By using a parametrization of the conditional vote probabilities P (~v|X) that is continuous in X, we
are also implicitly assuming that the equilibrium selection process is also continuous in X. Note that such
an assumption is not needed if we estimate P (~v|X) nonparametrically and impose no smoothness of these
probabilities in X.

21In particular, symmetry implies the following constraints: (i) β1,111 = β2,111 = β3,111, (ii) β1,011 =
β2,101 = β3,110, (iii) β1,100 = β2,010 = β3,001, (iv) β2,011 = β3,011 = β1,101 = β3,101 = β1,110 = β2,110, (v)
β2,100 = β3,100 = β1,010 = β3,010 = β1,001 = β2,001, (vi) γ011 = γ110 = γ101, and (vii) γ001 = γ100 = γ010,
where βj,~v is the coefficient on judge j’s characteristics in the multinomial logit equation for the vote profile
~v, and γ~v is the coefficient on the case characteristics in the multinomial logit equation for the vote profile
~v. See also Menzel (2011) for a related discussion about the importance of exchangeability restrictions in
Bayesian inference of partially identified models.
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model parameters (θ, ~π) and the voting assignment µ to depend flexibly on X. 22

5 Results

5.1 First-Stage Estimates

The results from the first-stage estimation are presented in Table 5. Since these are

“reduced-form” vote probabilities, these coefficients should not be interpreted in any causal

manner, but rather summarizing the correlation patterns in the data. Nevertheless, some

interesting patterns emerge.

First, vote outcomes differ significantly depending on the type of crime considered in each

case (cases involving aggravated assault, white collar crimes and theft are significantly less

likely to be overturned in a divided decision than other cases) and in response to differ-

ences in legal issues (cases involving problems with jury instruction or sentencing in the

lower courts are on average less likely to be overturned in a divided decision, while cases

involving issues of sufficiency and admissibility of evidence are less likely to be overturned

in unanimous decisions).

Vote outcomes also change with the partisan composition of the court. A republican judge

is less likely to be in the majority of a divided decision to overturn (less so in assault and

white collar cases) and more likely to be in the majority of a divided decision to uphold

the decision of the lower court. At the same time, cases considered by courts composed of

a majority of republican judges on average have a significantly higher probability of being

overturned in both unanimous and divided decisions. The first result indicates that this is

due to the voting behavior of the democrat judge when facing a republican majority.

Finally, vote outcomes also differ based on judges’ judicial and political experience. Judges

with more judicial and political experience, or with more years of experience in the court,

are less likely to be in the majority of a divided decision to overturn. Neither having a

female judge on the panel, or a majority of graduates from Harvard or Yale Law schools (a

possible club effect) are significantly related to vote outcomes.

22Both the estimation and the inference procedure described in the previous section can be used for each
fixed value of X = x in exactly the same way, only with p̂v(~v), ~̂pv, pv(~v) and ~pv replaced by pv(~v|x, β̂),
~pv(x, β̂), pv(~v|x, β) and ~pv(x, β), (θ, ~π, µ) replaced by (θ(x), ~π(x), µ(·|·;x)) and Σ̂n replaced by Σ̂n(x) =

(∂~pv(x, β̂)/∂β
′
)Σ̂β(∂~pv(x, β̂)/∂β), where Σ̂β is a consistent estimator of the asymptotic variance of

√
n(β̂−β),

which can be obtained from the first stage. The consistency and the coverage probability theory go through
in the logit case described above as long as Σβ is invertible.
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Table 5: First-stage estimates, from a multinomial logit model (baseline vote profile (0,0,0))

v = (v(i), v(k), v(m))
v = (1, 1, 1) v = (1, 0, 1) v = (0, 1, 0)

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

Case Specific:
FedLaw -0.160 0.131 -1.008 0.235 -0.296 0.271
Aggravated -0.217 0.271 -1.254 0.520 0.585 0.553
White Collar -0.406 0.231 -0.751 0.438 0.429 0.509
Theft 0.042 0.241 -1.362 0.563 1.432 0.505
Narcotics -0.260 0.243 -0.578 0.474 0.061 0.592
Rep. Majority 0.332 0.178 1.308 0.445 -0.549 0.376
Female 0.050 0.165 0.212 0.346 0.136 0.326
Harvard-Yale Majority -0.120 0.118 -0.263 0.277 -0.149 0.245
Jury Instruction -0.147 0.119 -0.913 0.359 0.227 0.216
Sentencing -0.341 0.130 -0.922 0.384 -0.081 0.266
Admissibility -0.333 0.099 -0.316 0.229 0.374 0.189
Sufficiency -0.543 0.115 -0.426 0.276 -0.268 0.226

Judge Specific:
J(i) Republican -0.192 0.117 -1.950 0.347 0.634 0.325
J(i) Years of Experience -0.003 0.004 -0.028 0.010 0.004 0.009
J(i) Prior Judicial Experience -0.001 0.004 -0.046 0.012 -0.006 0.010
J(i) Prior Political Experience 0.006 0.007 -0.041 0.022 0.034 0.015
J(i) Rep × Assault -0.021 0.162 0.918 0.464 0.037 0.394
J(i) Rep × WhtCol 0.110 0.137 0.861 0.447 -0.203 0.370
J(i) Rep × Theft -0.175 0.157 -0.077 0.577 -0.910 0.447
J(i) Rep × Narctcs -0.075 0.141 0.416 0.483 -0.089 0.426
J(k) Republican -0.192 0.117 -0.967 0.363 -0.324 0.430
J(k) Years of Experience -0.003 0.004 -0.019 0.014 0.015 0.012
J(k) Prior Judicial Experience -0.001 0.004 -0.004 0.014 -0.029 0.015
J(k) Prior Political Experience 0.005 0.007 -0.047 0.033 -0.035 0.029
J(k) Rep × Assault -0.021 0.162 0.729 0.611 0.028 0.575
J(k) Rep × WhtCol 0.110 0.137 0.483 0.582 0.558 0.536
J(k) Rep × Theft -0.175 0.157 1.744 0.694 -1.486 0.844
J(k) Rep × Narctcs -0.075 0.141 0.428 0.618 -0.325 0.630
J(m) Republican -0.192 0.117 -1.950 0.347 0.634 0.325
J(m) Years of Experience -0.003 0.004 -0.028 0.010 0.004 0.009
J(m) Prior Judicial Experience -0.001 0.004 -0.046 0.012 -0.007 0.009
J(m) Prior Political Experience 0.005 0.007 -0.042 0.022 0.034 0.015
J(m) Rep × Assault -0.021 0.162 0.918 0.464 0.037 0.394
J(m) Rep × WhtCol 0.110 0.137 0.861 0.447 -0.203 0.370
J(m) Rep × Theft -0.175 0.157 -0.077 0.577 -0.910 0.447
J(m) Rep × Narctcs -0.075 0.141 0.416 0.483 -0.089 0.426
Constant -0.394 0.215 (dropped) -4.455 0.517
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5.2 Second-Stage Estimates: Preferences and Information

In the second stage we use the estimated voting probability vector p̂ = p(~v|X; β̂) to estimate

the identified set of the model parameters (θ, ~π). To present the results, we fix benchmark

case and judge characteristics, and later on introduce comparative statics from this bench-

mark. For our benchmark case we consider a white collar crime prosecuted under federal

law, in which the major legal issue for appeal is admissibility of evidence. Judges 1 and 2

are Republican, and judge 3 is a Democrat (so that the majority of the court is Republican).

All three judges are male, and at most one of the judges has a law degree from Harvard

or Yale. The three benchmark judges differ in their years of court experience, as well as

prior judicial and political experience. (See Table A.3 in the Online Appendix for the full

benchmark specification.)

The left panel of Figure 2 plots points in the estimated identified set (EIS) for an agnostic

prior belief, ρ = 0.5, which we take as a benchmark to present our results. For simplicity,

we begin by presenting results for a symmetric model, in which πi = π for all i ∈ N .
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ρ = 0.5 ρ = 0.2

Figure 2: Left panel plots points (π, q) in the EIS for ρ = 0.5 (left panel) and ρ = 0.2 (right
panel) in a symmetric model, where πi = π for all i ∈ N .

Two features of the EIS are immediately apparent from the figure. First, as in section 4.1,

the range of values of the bias parameter π that are consistent with the data for a given

value of competence is increasing in q. Thus, high ability judges can be highly predisposed

to uphold or to overturn, but low ability judges must be relatively malleable, willing to

overturn (uphold) even when it is slightly more (less) likely than not that the trial court’s

decision is incorrect (π ≈ 1/2). Second, because the distribution of vote profiles in the data

is asymmetric in favor of upholding the decision of the lower court, the EIS for ρ = 0.5 is

asymmetric towards larger values of π, indicating a higher information hurdle to overturn
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the decision of the lower court. Thus, with an uninformative prior, malleable judges of all

competence levels are consistent with the data, but judges who are highly predisposed to

uphold can only be consistent with the data if they are highly competent, and judges that

are highly predisposed to overturn are not consistent with the data (irrespective of their

competence level).

For comparison purposes, the right panel of Figure 2 plots the EIS for a value of ρ that

approximates the empirical frequency of cases in which the court overturned the decision

of the lower courts, ρ = 0.2. In this case the prior belief that the trial’s court decision is

flawed is relatively low. Thus, when private signals are not too informative, only judges

who are predisposed to overturn (π < 1/2) can vote in a way consistent with the data. To

understand this inverse relationship between ρ and πi among points in the EIS, recall that

judge i votes to overturn given information I if and only if Pri(ω = 1|I) ≥ πi, which can

be written in terms of the relative likelihood of the event I in states ω = 1 and ω = 0 as

Pri(I|ω = 1)

Pri(I|ω = 0)
≥ πi

1− πi
1− ρ
ρ

.

The results for the EIS with heterogeneous preferences extend naturally the results of Figure

2 for the symmetric model: while low competence judges must be homogeneous and rela-

tively malleable (willing to uphold or overturn with little supporting information) in order

to be consistent with the data, competent judges can have highly heterogeneous preferences

and still generate a distribution of vote profiles consistent with the data. To illustrate this

result in a simple plot, we introduce a measure of preference heterogeneity.

H(~π) =
∑
i∈N

∑
j 6=i

(πi − πj)2.

Our index of preference heterogeneity increases as judges’ bias parameters are farther apart

from one another, reaching a theoretical maximum of two, and decreases as judges’ prefer-

ences are closer to each other’s, reaching a minimum of zero when all judges have the same

preferences.

Figure 3 plots pairs of quality of information and preference heterogeneity that are consistent

with points (~π, q) in the EIS for ρ = 0.5, for the asymmetric model in which judges’

preferences πi, i = 1, 2, 3 are not restricted to be identical. For low quality, only very

homogeneous courts (H → 0) are consistent with the data, but as competence increases the

allowed heterogeneity in preferences increases as well, reaching values close to 1 for high

levels of q.
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Figure 3: Pairs (H, q) consistent with points (~π, q) in the EIS for ρ = 0.5, asymmetric model

This result is interesting in its own right because it clarifies that high unanimity rates (a

feature of our voting data) do not imply common interests at an ex ante stage. Thus, neither

preference homogeneity nor external motives, such as an intrinsic desire to compromise or

to put forward a “unified” stance in each case, are required to rationalize the data. While

low quality judges would agree as much as they do in the data only if they had very

similar preferences, deliberation among competent judges can generate the high frequency

of unanimous votes observed in the data without requiring these auxiliary motives.

Comparative Statics. In the discussion above, we have focused on the benchmark case

and court characteristics. It should be clear, however, that both the identified set and the

set of equilibrium outcomes for each point in the identified set are functions of the observ-

able characteristics that enter the first stage multinomial logit model. Thus, proceeding as

above, we can quantify the changes in types and outcomes associated with alternative con-

figurations of the cases and/or the courts under consideration. To illustrate this, we evaluate

the effect of changing the nature of the crime considered in the case from a White Collar

crime to Theft on judges’ preferences: are justices more or less predisposed to overturn the

lower court in Theft cases?

The results are illustrated in Figure 5.2. The figures show points in “White Collar EIS” not

in the “Theft EIS” (blue), and points in the Theft EIS not in the White Collar-EIS (red).

The figures suggest that changing from White-Collar to Theft crimes makes the average

judge or less prone to overturning the lower court (left panel), and reduces the level of

disagreement in the court (right panel). The Theft EIS excludes the more heterogeneous

courts, and the courts with judges biased more toward upholding in the White Collar EIS.
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Figure 4: Points in White Collar EIS not in the Theft EIS (blue), and points in the Theft
EIS not in the White Collar-EIS (red). Y-axis plots the average bias (left panel) and
preference heterogeneity (right panel). X-axis plots quality of information q.

5.3 Equilibrium Outcomes with Deliberation

In the previous section we described the set of characteristics of members of the court that

are consistent with the data (points (θ, ~π) in the EIS). We now use these results to evaluate

the set of outcomes that are consistent with the data. We know the voting probabilities

since we used them to estimate the EIS in the first place. But knowing the set of parameters

consistent with the data allows us to compute more interesting measures of payoff-relevant

outcomes. In particular, we focus on the probability that the court reaches an incorrect

decision after deliberating and voting strategically.

Note that for any given point (θ, ~π) ∈ A0, and any communication equilibrium µ ∈M(θ, ~π),

we can compute the probability that the court reaches an incorrect decision, ε(µ, (θ, ~π)).

This probability of error ε(µ, (θ, ~π)) is the weighted average of the type-I error (overturn

when should uphold), εI(µ, (θ, ~π)) = Pr(v = 1|ω = 0) =
∑
~t

∑
~v:v=1 µ(~v|~t)p(~t|w = 0),

and the type-II error (uphold when should overturn) εII(µ, (θ, ~π)) = Pr(v = 0|ω = 1) =∑
~t

∑
~v:v=0 µ(~v|~t)p(~t|w = 1); i.e.,

ε(µ, (θ, ~π)) = (1− ρ)εI(µ, (θ, ~π)) + ρεII(µ, (θ, ~π)).23 (5.1)

For each point (θ, ~π) ∈ A0 there are in fact multiple equilibria µ ∈ M(θ, ~π), each being

associated with a certain probability of error ε(µ, (θ, ~π)) computed as in (5.1). Thus, for

each point in the EIS, there is a set of error probabilities that can be attained in equilibrium.

23Note that both the type-I error and the type-II error are functions of the model parameters µ, θ, ~π, and
inference on them amounts to projecting the EIS of the model parameters onto the range of these functions.
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In order to describe the range of possible equilibrium outcomes for court configurations

consistent with the data, we focus on the maximum and minimum equilibrium probability

of error for each point in the EIS.

There are two possible sets of such bounds that a researcher might find valuable, depend-

ing on the question at hand. First, we can compute the maximum and minimum error

probabilities across equilibria that are consistent with the observed data ~pv, ε
∗(θ, ~π, pv),

and ε∗(θ, ~π, pv). These bounds rule out error probabilities that are either not attainable

in equilibrium given the parameters (θ, ~π), or are attainable by mixtures of equilibria that

would lead to a distribution over vote profiles that differs from the one observed in the data.

Formally, for each point (θ, ~π) in the EIS, and data ~pv, we define

ε∗(θ, ~π, pv) ≡ max
µ∈M(θ,~π)

ε(µ, (θ, ~π)) s.t. pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)

 , (5.2)

and similarly for ε∗(θ, ~π, pv).
24

A second, more expansive criterion, is to consider the maximum and minimum probability

of error across all equilibria,

ε(θ, ~π) ≡ max
µ∈M(θ,~π)

ε(µ, (θ, ~π)), and ε(θ, ~π) ≡ min
µ∈M(θ,~π)

ε(µ, (θ, ~π)). (5.3)

Unlike expression (5.2), expression (5.3) includes error probabilities that are attainable

through equilibria that are not consistent with the observed data. The logic behind (5.3) is

that equilibrium selection in a given sample is not informative about equilibrium selection

in a counterfactual (or in a different sample). Thus, although in the particular data at

hand we can rule out that these equilibria were played for these parameter values, it is

conceivable that these outcomes can be produced if judges were to play a different selection

of equilibria in a counterfactual.

Figure 5 plots the minimum and maximum probability of error in equilibria consistent with

the data for pairs of preference heterogeneity and competence (H, q) consistent with points

in the EIS for ρ = 0.5.25

Consider first the minimum error probability, on the left panel. For low competence, q,

24Note that because M(θ, ~π) is a convex set and the constraint pv(~v) =
∑
~t µ(~v|~t)p(~t; θ) is linear in µ, µ

can be replaced with a linear combination of elements in M(θ, ~π) without affecting the value of ε∗(θ, ~π, pv)
or ε∗(θ, ~π, pv). Therefore, when considering equilibria consistent with the data, we are not assuming that
the same equilibrium is played in every case.

25When there are multiple points (~π, q) such that H(~π) = H, the figure plots the average of extrema
across these points.
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Figure 5: Minimum (left panel) and maximum (right panel) probability of error in equi-
libria consistent with the data, for pairs of preference heterogeneity and competence (H, q)
consistent with points in the EIS for ρ = 0.5. (Average of extrema across points (~π, q) such
that H(~π) = H).

only very homogeneous courts, composed entirely of malleable judges, are consistent with

the data. These courts are highly inaccurate, even after pooling information, and corre-

spondingly make wrong decisions very often (about 45% of the time as q → 1/2). As ability

increases, however, more heterogeneous courts can also be consistent with the data. These

more able courts are capable of producing decisions with a much lower error rate, even when

they are quite heterogeneous.

The right panel focuses on the maximum probability of error in equilibria consistent with

the data. The difference between the best and worst equilibria is small for homogeneous

courts of low competence and heterogeneous courts with high competence, but is relatively

large for courts composed of competent judges with aligned preferences. This is because

errors in the worst equilibrium remain high as ability increases precisely when courts are

homogeneous. In fact, the last column of Table 4 shows that the example in Section 3

generates a vote distribution equal to the one observed in the data. On the other hand,

the maximum equilibrium probability of error decreases sharply with the heterogeneity of

the court when courts are competent. Thus, heterogeneous courts can be rationalized as

generating the observed voting data, but only if they are competent and play equilibria in

which they use their information effectively.

The key consideration we should keep in mind here is that this is not a theoretical result,

but a combination of data and equilibrium restrictions. Heterogeneous courts have to be

“better” – in the sense that judges must have more precise information, and for any given

level of quality, must shed off the worse equilibria – in order to be consistent with the data.
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The reason why very heterogeneous courts must be sufficiently effective to be consistent

with the data, on the other hand, comes directly from the equilibrium conditions in the

voting stage and the feature of our observed data.

To see how, consider without loss of generality judges with bias parameters π1, π2 and π3

such that π1 < π2 = π3. As the heterogeneity in the bias parameters increases, the court

is more and more predisposed to vote ~v = {100}. However, in our observed data (ref. the

last column of Table 4), ~v = {100} is not predominately more likely than ~v = {010} and

~v = {001}. Thus, in order to be consistent with this feature of the data, the judges need

to be induced to play {010} and {001} with nonnegligible probability. Take {001} as an

example. Given a signal profile ~t, in order for {001} to be the equilibrium outcome, we need

judge 1 to vote 0 given t1, judge 2 to vote 0 given t2, and judge 3 to vote 1 given t3. But

note that in equilibrium judge i votes to overturn given signal ti if and only if

Pr(ω = 1|vi = 1, ti, P iv
i; (~q, ρ, µ)) ≥ πi,

and votes to uphold given signal ti if and only if

Pr(ω = 1|vi = 0, ti, P iv
i; (~q, ρ, µ)) ≤ πi.

To achieve this when heterogeneity in the judges’ bias parameters πi is very high, the

inference of judge 3 about her fellow panel members’ information must be powerful enough

to sway her away from her initial predisposition. This cannot happen when she knows

that the other judges’ information is useless, or if the strategy profile is not sufficiently

informative.

This logic also shows why courts composed of competent judges with similar preferences can

produce bad outcomes. Homogeneous courts put less demanding constraints on equilibrium

beliefs and thus on equilibrium behavior µ. Put informally, with less diversity of preferences

there are fewer checks on equilibrium group behavior. Moreover, the possibility of being

able to sustain bad equilibria increases with the precision of judges’ information. This is

the same reason for why judges’ ability must be relatively high if they are to be consistent

with the data when courts are heterogeneous: it is precisely when individuals believe that

the fellow panel members have precise information that equilibrium inferences become more

powerful.

Figure 6 reproduces Figure 5 across all equilibria. The right panel of Figure 6 plots the

mapping of points in the EIS to the maximum probability of error. As the figure illustrates,

ε(·) is qualitatively similar to the maximum probability of error across equilibria consistent

with the data ε∗(·, pv).
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Figure 6: Minimum (left panel) and maximum (right panel) probability of error in all
equilibria, for pairs of preference heterogeneity and competence (H, q) consistent with points
in the EIS for ρ = 0.5. (Average of extrema across points (~π, q) such that H(~π) = H).

The left panel plots the minimum equilibrium probability of error across all equilibria.

As before, the rate of errors in the best equilibria decreases with competence, but now

the minimum error probability approaches zero as q → 1, even when judges are highly

heterogeneous. This contrasts with the results for equilibria consistent with the data, in

which the minimum equilibrium error probability was bounded above 20%, even as q → 1.

The intuition for this result is straightforward. Note that in a large sample, given a prior

ρ = 0.5, an unbiased high quality court playing the best equilibrium would uphold roughly

50% of the time. Recall however that in the data, the court upholds more than 75% of

the time. This means that a court can only match the data by making a relatively large

number of errors.

The logic is further emphasized in Figure A.2 in the Online Appendix, which reproduces

Figures 5 and 6 for a prior of ρ = 0.2. Since in this case the prior is close to the frequency

with which the court overturns the trial courts in the data, the minimum and maximum

probability of error in the equilibria consistent with the data is lower overall, and the

probability of error in the best equilibrium consistent with the data goes to zero as q goes

to one. With this caveat, the mapping of court characteristics to equilibrium outcomes with

ρ = 0.2 is qualitatively similar to that for ρ = 0.5.

5.4 The Impact of Deliberation

Having described the outcomes attained in equilibria with deliberation, our next goal is to

quantify the effect of deliberation: how much do outcomes differ because of deliberation?

To do this, we compare equilibrium outcomes with deliberation with the outcomes that
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would have arisen in a counterfactual scenario in which judges are not able to talk with one

another before voting. In particular, for each point (θ, ~π) in the estimated identified set, we

compare the maximum and minimum error probabilities in equilibria with deliberation with

the corresponding maximum and minimum error probabilities in responsive Bayesian Nash

equilibria (BNE) of the voting game without communication, εND(θ, ~π) and εND(θ, ~π).

To carry out this comparison, we solve for all responsive BNE of the non-deliberation game,

for all parameter points in the EIS. In the game without deliberation, the strategy of player

i is a mapping σi : {0, 1} → [0, 1], where σi(ti) denotes the probability of voting to overturn

given signal ti. A BNE is a strategy profile σ such that each judge i’s strategy is a best

response to the voting strategy of the other judges in the court. In particular, it is easy to

show that σi(ti) > 0 (< 1) only if Pr(ω = 1|ti, P ivi) ≥ πi (≤ πi), or

Pr(ti|ω = 1)

Pr(ti|ω = 0)

Pr(Pivi|ω = 1;σ)

Pr(Pivi|ω = 0;σ)
≥ πi

1− πi
1− ρ
ρ

(5.4)

Following the convention in the literature, we say that a BNE equilibrium σ is responsive

if the probability that the court overturns the decision of the lower court is not invariant

to judges’ private information. More specifically, let Pr(v = 1|~t;σ) denote the probability

that the court overturns the decision of the lower court when judges receive signals ~t, and

vote according to σ. Then a BNE σ is responsive if there exist two signal realizations, ~t

and ~t′ such that Pr(v = 1|~t;σ) 6= Pr(v = 1|~t′;σ). Characterizing responsive equilibria in

the non-deliberation game is straightforward but somewhat cumbersome, because the set of

BNE is not convex and a number of different strategy profiles can form a BNE for different

parameter values (e.g., all judges mix after a one signal and uphold after a zero signal, two

judges mix after a one signal and uphold after a zero signal while the third overturns, etc).

We discuss this further in the Online Appendix (Section D).

We begin by contrasting the probability of error with and without deliberation for all

comparable points in the EIS; i.e., for points in the EIS in which there exists a responsive

equilibrium of the game without deliberation. We focus first on how the effect of deliberation

changes as a function of initial disagreement among judges in the panel.

Figure 7 plots the maximum and minimum equilibrium probability of error with and without

deliberation for various levels of information precision q and prior beliefs ρ. The bounds

on equilibrium errors are plotted as a function of the degree of preference heterogeneity in

the court, for levels of heterogeneity consistent with points in the EIS (values H such that

H = H(~π) for some (~π, θ) ∈ A0). Each panel plots the maximum and minimum probability

of error in (i) all equilibria with deliberation (black), (ii) in equilibria of the voting game

with deliberation that are consistent with the data (dotted), and (iii) in responsive equilibria
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without deliberation (red).26

The results show that deliberation can be useful when the court is heterogeneous, but will

generally be either ineffectual (all equilibria) or counterproductive (eq. consistent with the

data) when the court is relatively homogeneous.

Consider first all equilibria with deliberation. Note that since there is always a “babbling”

equilibrium, in which all messages are interpreted as uninformative, this set includes the

set of equilibria without deliberation. Thus, ε(θ, ~π) ≤ εND(θ, ~π) ≤ εND(θ, ~π) ≤ ε(θ, ~π) for

all points (θ, ~π) in the EIS. Still, the comparison allows us to put an upper bound on the

potential gain or loss that can be attributed to deliberation under any equilibrium selection

rule.27 In fact, Figure 7 shows that when the court is relatively homogeneous (H small),

the biggest possible improvement that can be attributed to deliberation is fairly small,

under any possible equilibrium selection rule one could use. On the other hand, as the

heterogeneity of preferences increases, mistakes in equilibria without deliberation become

more frequent (both εND(θ, ~π) and εND(θ, ~π) shift up) while the probability of error in the

best equilibrium with deliberation remains flat. This shows that at least for some initial

prior beliefs, deliberation can have a non-negligible positive effect on outcomes when the

level of initial disagreement in the court is relatively high.

Considering equilibria consistent with the data allows a more straightforward assessment

of the effect of deliberation. Because the set of outcomes of voting with deliberation in

equilibria consistent with the data does not necessarily include the set of outcomes of voting

without deliberation, nor is it ranked relatively to it in any way ex ante, the comparison

with the counterfactual allows a more conclusive evaluation of the effect of deliberation.

The results reinforce our previous conclusions. As the figures show, in fact, for low levels

of conflict all responsive equilibria of the game without deliberation lead to a lower prob-

ability of mistakes than all equilibria consistent with the data of voting with deliberation.

Thus, when courts are relatively homogeneous, pre-vote deliberation leads to a larger inci-

dence of errors than responsive equilibria without deliberation, even when we consider the

best possible equilibrium with deliberation and the worst responsive equilibrium without

26Note that the maximum level of preference heterogeneity consistent with the data is increasing in q
(Figure 3). As a result, the solid black lines extend for a larger range of values of H as we move from the
figures in the bottom (for q = 0.70), to the figures in the top (for q = 0.90).

27Recall that our equilibrium concept in the game with deliberation is agnostic about the possible com-
munication protocol judges might be using. Thus, a large gain/loss can be due to different equilibrium
behavior for a fixed communication protocol, or to our ignorance about which particular communication
protocol judges could be using. On the other hand, we know that the equilibrium outcomes of any com-
munication protocol judges could be using is contained in the set of outcomes of communication equilibria.
Thus, the maximum gain/loss that can be attributed to deliberation provides an upper bound on the effect
of deliberation.
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Figure 7: Probability of mistakes with and without deliberation for values of preference
heterogeneity H consistent with points (~π, θ) in the EIS for ρ = 0.5 (left), and ρ = 0.2
(right). Min. and max. eq. probability of error in (i) all equilibria with deliberation (solid
black), (ii) in equilibria with deliberation consistent with the data (dotted), and (iii) in
responsive equilibria without deliberation (solid red, with marker).

33



deliberation.

As before, this result changes when conflict of interests among judges increases. This is due

to two effects. First, as we have seen already, the probability of error in voting without

deliberation increases with the heterogeneity of preferences in the court. In addition, the

maximum probability of error of voting with deliberation in equilibria consistent with the

data decreases with heterogeneity (recall Figure 5). For ρ = 0.5, this implies that the

negative effect of deliberation on outcomes diminishes with heterogeneity. But for ρ =

0.2, where the errors in equilibria consistent with the data are lower to begin with, this

means that deliberation actually improves on no-deliberation when the court is sufficiently

heterogeneous. Overall, the results indicate that voting after deliberation can reduce errors

when courts are sufficiently heterogeneous, but leads to more erroneous decisions than what

we would obtain in responsive equilibria without deliberation when courts are homogeneous.

Figure 8 presents the results from a different perspective. The panels in the figure reproduce

the structure of Figure 7, but they do so for a fixed level of heterogeneity of preferences

and prior beliefs, plotting errors as a function of the level of quality of information in the

court. As the figures illustrate, deliberation tends to increase errors in the court when

judges’ private information is very precise: the probability of mistakes in all responsive

equilibria without deliberation is fairly small, and very close to the minimum probability

of error across all equilibria with deliberation. Moreover, the probability of errors in all

equilibria without deliberation is significantly lower than the probability of errors with pre-

vote deliberation in any equilibrium consistent with the data. However, the relative efficacy

of voting with deliberation increases as judges’ private information gets less precise. In fact,

for some values in the EIS for ρ = 0.2, deliberation dominates no deliberation when judges’

information is sufficiently imprecise. This result is intuitive: exchanging information before

the vote can help precisely when it allow judges to overcome deficiencies in their own private

information.

Figures 7 and 8 show that pre-vote deliberation can be beneficial when the court is hetero-

geneous or the quality of justices’ private information is low. But just how typical is such

a court configuration in comparable points in the EIS? Figure A.3 in the Online Appendix

plots the correspondence between the min/max probability of error in responsive equilibria

without deliberation and the min/max probability of error in equilibria with deliberation,

for both all equilibria and equilibria consistent with the data. The figure shows that while

deliberation typically leads to higher error rates than what can be achieved in responsive

equilibria without deliberation, it can also be beneficial for a range of points in the EIS, in

particular when ρ = 0.2. This reassures us that the picture presented in Figures 7 and 8 is

representative of the results across the EIS.
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Figure 8: Probability of mistakes with and without deliberation as a function of the quality
of information q, for points (~π, q) in the EIS for ρ = 0.5 (left), and ρ = 0.2 (right). Min.
and max. eq. probability of error in (i) all equilibria with deliberation (solid black), (ii)
in equilibria with deliberation consistent with the data (dotted), and (iii) in responsive
equilibria without deliberation (solid red, with marker).
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5.5 Remarks and Robustness Checks

We follow with a series of supplemental results and robustness checks.

Confidence Set. Up to this point, we have restricted the comparison between communi-

cation equilibria and responsive equilibria without deliberation to points in the estimated

identified set. These are court types that are consistent with the point estimate of the vote

probabilities, p̂(X). When we incorporate the uncertainty in our estimate of the true vote

probability p(X), the set of types that are consistent with the data is given by the confi-

dence set CS (see Section B in the Online Appendix for details on how we construct CS).

Figure A.4 in the Online Appendix reproduces Figure 7 for all points in the confidence set.

Our main conclusion remains unaltered: deliberation can be useful when judges’ preferences

are heterogeneous, but will generally be either ineffectual (if we consider all equilibria with

deliberation) or counterproductive (for equilibria consistent with the data) when the court

is relatively homogeneous. A similar observation holds for the results in Figure 8.

Non-responsive Equilibria. In the results above, we compared the probability of incor-

rect decisions in equilibria with deliberation with the corresponding probability of mistakes

in responsive Nash equilibria of the voting game without communication. In some points

in the EIS, however, the voting game without deliberation only admits unresponsive BNE,

where the decision of the court does not depend on judges’ private information (i.e., at

least two judges vote unconditionally to overturn or uphold). In these unresponsive BNE,

the minimum and maximum probabilities of error equal min{ρ, 1 − ρ} and max{ρ, 1 − ρ}
respectively. We should therefore keep in mind that in addition to any positive effect delib-

eration can have on outcomes relative to responsive equilibria of voting without deliberation,

pre-vote communication also expands the set of court configurations for which equilibrium

outcomes are responsive to private information. Indeed, in close to 14% of points in the EIS

for ρ = 0.5 and 8% of points in the EIS for ρ = 0.2, private information is too imprecise to

overcome differences in preferences, and the only equilibrium of voting without deliberation

is completely unresponsive to judges’ private signals.

Efficient Deliberation. The results so far are agnostic about equilibrium selection. It

could be argued, however, that equilibria that maximize judges’ aggregate welfare constitute

a focal point, both in the game with deliberation and in the game without deliberation. If

this were the case, deliberation could in fact improve welfare, and would certainly do so if

we don’t restrict to equilibria consistent with the data. In order to quantify this potential
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gain, we adopt a utilitarian approach, and compare social welfare in the equilibria that

maximize the sum of judges’ payoffs with and without deliberation, for equilibria consistent

with the data and all equilibria. (We report the details of this exercise in the Online

Appendix, section E.) The results confirm our previous findings. When we consider the

maximum aggregate welfare for points in the EIS for ρ = 0.5 across all equilibria we find

that the gain from efficient deliberation is fairly small, and concentrated at higher levels of

competence and preference heterogeneity. Restricting to efficient equilibria consistent with

the data, instead, deliberation generally reduces welfare (this is consistent with our previous

results for the EIS with ρ = 0.5). In fact, for relatively homogeneous courts (H ≤ 0.5),

aggregate welfare at the efficient equilibrium without deliberation for a moderate level of

ability of q = 0.80 exceeds aggregate welfare at the efficient equilibrium with deliberation

at q = 0.90.

Refining the Identified Set via Instrumental Variables. Our treatment of deliber-

ation thus far has been purposely agnostic, and only imposes the weak requirement that

judges be playing a communication equilibrium. As a result the identified set of param-

eters can be large. In this section, we refine the identified set using an instrument; an

exogenous case characteristic Z which affects vote outcomes indirectly, through its effect

on deliberation, but does not change the structural parameters (ρ, ~π, ~q). The variable Z

is an instrument in the sense that it affects the endogenous vote outcomes, but does not

affect the structural parameters which characterize judges’ preferences and the information

structure.28

The availability of the instrument Z introduces additional constraints to the model, which

shrinks the identified set of model parameters. Let ~pv(z) be the conditional distribution of

the voting profiles given Z = z. Then for every z, the incentive compatibility constraints

(equations 3.2-3.4 in paper) and the equilibrium conditions (equation 4.1 in paper) with

µ(~v|~t) replaced by µ(~v|~t, z) and ~pv replaced by ~pv(z) hold. They form the additional iden-

tifying restrictions for (ρ, ~π, ~q). These additional restrictions are not redundant precisely

because Z affects deliberation effectiveness and thus varies the equilibrium voting profile

distribution.

As an instrument we use here the variable CASELOAD, defined as the number of cases per

judge in a given year in a given circuit. The caseload of a circuit directly influences the

time constraint on the deliberation of the cases in that circuit, and as a result, the extent

28Unlike in the regression context, in which the requirements of an instrument variable are well-understood,
in our moment inequality model with partial identification using CASELOAD as an instrument requires that
the model parameters do not depend on it.
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and effectiveness of deliberation. Because CASELOAD ultimately depends on the number

of appealed cases and the number of appellate judges at the circuit level – both of which

are exogenous and predetermined from the judges’ point of view – it can be reasonably

believed to be exogenous to judges’ beliefs, biases and signal quality. Likewise, it seems

eminently plausible that time constraints on deliberation will not affect judges’ prior beliefs

and preference parameters. Here, we proceed under the assumption that CASELOAD is

exogenous to all the model parameters. In the Online Appendix, section F, we show that

these results are robust even after allowing the possibility that CASELOAD may affect

judges’ signal quality q (for instance, a high CASELOAD may force judges to make more

hasty decisions).

Using CASELOAD as our instrument, we can refine the identified set using the idea of

“intersection bounds” (as in Chernozhukov, Lee, and Rosen (2013)). Specifically, we sep-

arately estimate identified sets conditional on seven values of CASELOAD, corresponding

to seven quantiles (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875) of the variable in the data.

Then, we can intersect all these sets (as well as the estimated identified set reported earlier)

to obtain our final estimate of the identified set of model parameters.

The procedure is illustrated in Figure A.5 in the Online Appendix. We find that the

intersection procedure shrinks the identified set substantially. Specifically, the number

of grid points in the original estimated sets was 38,963, and shrinks to 13,912 (roughly

one third) points once we perform the intersection with the identified sets conditional on

these seven percentiles of the caseload variable. Figure A.5 plots projections of the EIS

for q = 0.76 and ρ = 0.5 at three different levels of intersection. For the plots here, we

see that the shrinking procedure asymmetrically eliminates points from the identified set;

particularly, comparing the Level 0 to Level 3 figures, we see that the latter no longer

includes points where π1, π2, π3 < 0.4. Thus, these intersection bounds suggest that the

data are consistent with courts composed of judges who are less predisposed to overturn.

For the refined identified set, we have also re-computed the graphs illustrating the prob-

ability of mistakes with and without deliberation, as shown in Figure A.6 in the Online

Appendix. As the figure shows, the refinement of the EIS does not change our previous

results regarding the effect of deliberation. This is because shrinking the identified set,

while eliminating courts very prone to overturning, has not removed highly homogeneous

courts, for which deliberation is least beneficial relative to no deliberation.

Unanimous Decisions. Around 90% of the cases in our dataset were decided by unani-

mous decisions of the judges. This may raise worries regarding identification, especially as
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typical empirical strategies for estimation of the spatial voting model rely solely on divided

votes (see Poole and Rosenthal (1985), Heckman and Snyder (1997), Clinton, Jackman,

and Rivers (2004)). Our empirical approach, however, is based on matching moments de-

scribing the frequency of votes of all types. As a result, all voting outcomes, including the

unanimous ones, provide information for our identification.

To demonstrate the fact that the unanimous votes provide useful variation, we did the

following experiment. In this experiment, we remove the unanimous voting profiles (000

and 111) from the benchmark probability distribution of the voting profile p̂ to obtain the

following artificial voting profile distribution:

p̂dissent = (.00, .20, .13, .25, .15, .18, .00, .09)′.

With this artificial distribution replacing the actual empirical distribution p̂, we reestimate

the identified set of the structural parameters and the error probabilities, and compare them

with those originally obtained. Because p̂ and p̂dissent imply the same conditional probability

distribution for the dissenting voting profiles given that votes are not unanimous, we should

expect the estimates based on these two to be similar were it true that the identification

comes solely from divided votes. However, we find that the estimates based on p̂ and

those based on p̂dissent are rather different. The difference is apparent, for example, in the

estimates of the max/min error probabilities consistent with the data. (See Figure A.7 in

the Online Appendix.) In particular, the estimated error bounds using the artificial data

are much lower and do not generally overlap with those using the actual data.

The reason that the unanimous votes are important for us lies in the basic structure of our

identification strategy. In particular, our identification uses the conditional voting profile

distribution (given X = x) to back out the value of the structural parameters (biases, and

quality of information of judges). Naturally, the whole voting profile distribution matters.29

Common Values Revisited: Questions of Law and Fact. A fundamental aspect

of our common values model is our understanding of what constitutes an error by the

appellate court, which we define by whether it rightly or wrongly determines that the law

was applied correctly in the trial court. Here we discuss this assumption and provide a

robustness exercise that focuses on a restricted sample of cases.

A key distinction in the process by which appellate judges determine if the lower court made

29One partial analogy with the structural empirical auction literature to note is that estimating an auction
model using the “number of actual bidders” vs. the “number of potential bidders” (with the difference
between the two being the bidders who do not participate because their bid would be below the reserve
price) can lead to very different estimates.
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one or more mistakes is whether the question is one of law or fact. Appellate judges give

great deference to trial courts on questions of fact. For example, findings of fact are reviewed

under a clear error standard.30 This also applies, for the most part, in cases involving jury

instructions.31 Questions of law are reviewed de novo by the appellate courts.32 However,

this standard is less lax than ‘de novo’ would imply. In particular, the appellate court

does not determine whether the evidence at the trial established guilt beyond a reasonable

doubt. Instead, the relevant question is whether, after viewing the evidence in the light

most favorable to the prosecution, “any rational trier of fact” could find the defendant

guilty.33 This makes the standard of review far more deferential to the lower court and

limits the effect of differences in judges’ personal evidentiary threshold requirements.

The type of cases for which the common value assumption may be considered questionable

is admissibility. While a trial court’s decision to admit evidence is generally reviewed for

abuse of discretion, the substantive law that governs searches and seizures has not been

stable during the years covered in the data.34 Thus, while in admissibility cases appellate

courts also “determine whether or not the law was applied correctly in the trial court”,

the assumption that errors are well defined given knowledge of all relevant facts and law,

while still plausible, is less straightforward in this context. Because of this, in a robustness

exercise we re-estimate our model and counterfactuals focusing exclusively on sentencing

and sufficiency cases. We find that our main conclusions are qualitatively unchanged (see

the Online Appendix, section G).

30See e.g., United States v. Rodgers, 656 F.3d 1023, 1026 (9th Cir. 2011) (motion to suppress); United
States v. Stoterau, 524 F.3d 988, 997 (9th Cir. 2008) (sentencing); United States v. Doe, 136 F.3d 631, 636
(9th Cir. 1998) (bench trial)).

31“In reviewing jury instructions, the relevant inquiry is whether the instructions as a whole are misleading
or inadequate to guide the jury’s deliberation.” (United States v. Dixon, 201 F.3d 1223, 1230 (9th Cir.2000)).
The formulation of instructions, whether or not to include special verdict forms, whether the record is
sufficient to warrant a lesser-included offense charge, etc. are all reviewed for abuse of discretion. More
purely legal questions (such as whether the charge omits or misstates a material element of the crime) are
reviewed de novo. However, given the rather black and white nature of whether or not the trial court was
substantively right or wrong in listing the elements of the offense in the charge to the jury, jury instructions
produce well defined errors in a full information environment.

32For instance, claims of insufficient evidence are reviewed under this more lenient standard. (See United
States v. Bennett, 621 F.3d 1131, 1135 (9th Cir. 2010); United States v. Sullivan, 522 F.3d 967, 974 (9th
Cir. 2008)).

33Jackson v. Virginia, 443 U.S. 307, 319 (1979).
34Federal courts, for instance, generally did not apply 4th Amendment concerns against the states until

1961 (Mapp v. Ohio, 367 U.S. 643 (1961)), and search and seizure cases were long contested even at the
Supreme Court, so there was more room for judicial ideology to affect decisions at the circuit courts given
the unsettled nature. Fifth Amendment concerns (notably Miranda v Arizona, 384 U.S. 436 (1966)) also
developed new law. Further, many investigatory tactics are reviewed de novo by intermediate courts: Terry
stops (United States v. Grigg, 498 F.3d 1070, 1074 (9th Cir. 2007)), warrantless searches, seizures, and
entries are treated similarly. E.g. United States v. Franklin, 603 F.3d 652, 655 (9th Cir. 2010).
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6 Conclusion

Deliberation is ubiquitous in collective decision-making. What is less clear is whether talk-

ing can have an effect on what people actually do. In this paper, we quantify the effect

of deliberation on collective choices. To do this we structurally estimate a model of voting

with deliberation, allowing us to disentangle committee members’ preferences, information,

and strategic considerations, and ultimately, to compare equilibrium outcomes under delib-

eration with a counterfactual scenario in which pre-vote communication is precluded.

Because the structural parameters characterizing judges’ biases and quality of information

are only partially identified, we obtain confidence regions for these parameters using a two-

step estimation procedure that allows flexibly for characteristics of the alternatives and

the individuals. We find that deliberation can be useful when judges tend to disagree ex

ante and their private information is relatively imprecise; otherwise, it tends to reduce the

effectiveness of the court. These findings extend the reach of previous theoretical results,

and complement findings from laboratory experiments.

Our analysis may be extended in various ways. In this paper, we have been largely agnostic

regarding the specific communication protocols used in US appellate courts, and we focused

on communication equilibria because the set of outcomes induced by communication equi-

libria coincides with the set of outcomes induced by sequential equilibria of any possible

communication sequence. In other committee voting settings, however, we may be able

to restrict attention to a particular communication protocol; in those cases, equilibrium

analysis may yield more precise predictions, which would allow us to further tighten the

identified set of parameters and predictions about the effects of deliberation. This we leave

for future explorations.

41



References

Austen-Smith, D., and J. S. Banks (1996): “Information Aggregation, Rationality, and the
Condorcet Jury Theorem,” American Political Science Review, 90, 34–45.

Austen-Smith, D., and T. Feddersen (2005): “Deliberation and Voting Rules,” In Social Choice
and Strategic Decisions: Essays in Honor of Jeffrey S. Banks, pp. 269–316.

(2006): “Deliberation, Preference Uncertainty, and Voting Rules,” American Political
Science Review, 100, 209–218.

Beresteanu, A., I. Molchanov, and F. Molinari (2011): “Sharp Identification Regions in
Models with Convex Moment Predictions,” Econometrica, 79, 1785–1821.

Berry, S., and E. Tamer (2006): “Identification in Models of Oligopoly Entry,” in Advances in
Economics and Econometrics, pp. 46–85. Cambridge University Press.

Cameron, A. C., J. B. Gelbach, and D. L. Miller (2011): “Robust Inference with Multiway
Clustering,” Journal of Business and Economic Statistics, 29.

Cantillon, E., and M. Pesendorfer (2006): “Combination Bidding in Multi-Unit Auctions,”
Working Paper, LSE.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Confidence Regions for
Parameter Sets in Econometric Models,” Econometrica, 75, 1234–1275.

Chernozhukov, V., S. Lee, and A. M. Rosen (2013): “Intersection Bounds: Estimation and
Inference,” Econometrica, 81, 667–737.

Clinton, J. D., S. Jackman, and D. Rivers (2004): “The Statistical Analysis of Roll Call
Data,” American Political Science Review, 55, 355–370.

Coughlan, P. (2000): “In Defense of Unanimous Jury Veredicts: Mistrials, Communication, and
Strategic Voting,” American Political Science Review, 94, 375–393.

De Paula, A., and X. Tang (2012): “Inference of Signs of Interaction Effects in Simultaenous
Games with Incomplete Information,” Econometrica, 80, 143–172.

Degan, A., and A. Merlo (2009): “Do Voters Vote Ideologically?,” Journal of Economic Theory,
144, 1869–1894.

De Paula, A., and A. Merlo (2009): “Identification and Estimation of Preference Distributions
when Voters are Ideological,” Working Paper, U. Penn.

Dickson, E., C. Hafer, and D. Landa (2008): “Cognition and Strategy: A Deliberation Exper-
iment,” Journal of Politics, 70, 974–989.

Doraszelski, U., D. Gerardi, and F. Squintani (2003): “Communication and Voting with
Double-Sided Information,” Contributions to Theoretical Economics, 3, 1–39.

Feddersen, T., and W. Pesendorfer (1997): “Voting Behavior and Information Aggregation
in Elections With Private Information,” Econometrica, 65, 1029–1058.

(1998): “Convicting the Innocent: The Inferiority of Unanimous Jury Verdicts under
Strategic Voting,” American Political Science Review, 92, 23–35.

Fischman, J. B. (2011): “Estimating Preferences of Curcuit Judges: a Model of Consensus Voting,”
Journal of Law and Economics, 54, 781–809.

Fischman, J. B. (2015): “Interpreting circuit court voting patterns: A social interactions frame-
work,” Journal of Law, Economics, and Organization, 31(4), 808–842.

42



Forges, F. (1986): “An Approach to Communication Equilibria,” Econometrica, 54(6), 1375–1385.

Galichon, A., and M. Henry (2011): “Set Identification in Models with Multiple Equilibria,”
Review of Economic Studies, 78(4), 1264–1298.

Gerardi, D., and L. Yariv (2007): “Deliberative Voting,” Journal of Economic Theory, 134,
317–338.

Goeree, J., and L. Yariv (2011): “An Experimental Study of Collective Deliberation,” Econo-
metrica, 79(3), 893–921.

Gole, T., and S. Quinn (2014): “Committees and Status Quo Bias: Structural Evidence from a
Randomized Field Experiment,” University of Oxford Department of Economics Discussion Paper
733.

Grieco, P. (2014): “Discrete Games with Flexible Information Structures: an Application to Local
Grocery Markets,” RAND Journal of Economics, 45, 303–340.

Guarnaschelli, S., R. McKelvey, and T. Palfrey (2000): “An Experimental Study of Jury
Decision Rules,” American Political Science Review, 94, 407–423.

Hansen, S., M. McMahon, and C. Velasco Rivera (2013): “Preferences or Private Assess-
ments on a Monetary Policy Committee?,” working paper, Pompeu Fabra.

Heckman, J., and J. J. Snyder (1997): “Linear Probability Models of the Demand for Attributes
with an Empirical Application to Estimating the Preferences of Legislators,” The RAND Journal
of Economics, 28(0), S142–S189, Special Issue in Honor of Richard E. Quandt.

Henry, M., and I. Mourifie (2011): “Euclidean Revealed Preferences: Testing the Spatial Voting
Model,” Journal of Applied Econometrics, pp. 345–61.

Iaryczower, M., G. Katz, and S. Saiegh (2013): “Voting in the Bicameral Congress: Large
Majorities as a Signal of Quality,” Journal of Law, Economics and Organization, 29(5), 957–991.

Iaryczower, M., G. Lewis, and M. Shum (2013): “To Elect or to Appoint? Bias, Information,
and Responsiveness of Bureaucrats and Politicians,” Journal of Public Economics, 97, 230–244.

Iaryczower, M., X. Shi, and M. Shum (2016): “Can Words get in the Way? Supplemen-
tal Appendix,” available online at http://www.hss.caltech.edu/~mshum/papers/Delib_JPE_

onlineapp.pdf.

Iaryczower, M., and M. Shum (2012a): “Money in Judicial Politics: Individual Contributions
and Collective Decisions,” Princeton University.

(2012b): “The Value of Information in the Court. Get it Right, Keep it Tight.,” American
Economic Review, 102, 202–237.

Kamenica, E., and M. Gentzkow (2011): “Bayesian Persuasion,” American Economic Review,
101(6), 2590–2615.

Kawai, K., and Y. Watanabe (2013): “Inferring Strategic Voting,” American Economic Review,
103(2), 624–662.

Landa, D., and A. Meirowitz (2009): “Game Theory, Information, and Deliberative Democ-
racy,” American Journal of Political Science, 53(2), 427–444.

Li, H., S. Rosen, and W. Suen (2001): “Conflicts and Common Interests in Committees,”
American Economic Review, 91, 1478–1497.

Lizzeri, A., and L. Yariv (2011): “Sequential Deliberation,” working paper, NYU.

43

http://www.hss.caltech.edu/~mshum/papers/Delib_JPE_onlineapp.pdf
http://www.hss.caltech.edu/~mshum/papers/Delib_JPE_onlineapp.pdf


Londregan, J. (1999): “Estimating Legislators’ Preferred Points,” Political Analysis, 8(1), 35–56.

Martin, A., and K. Quinn (2002): “Dynamic ideal point estimation via Markov chain Monte
Carlo for the US Supreme Court, 1953-1999,” Political Analysis, 10(2), 134–153.

(2007): “Assessing Preference Change on the US Supreme Court,” Journal of Law, Eco-
nomics and Organization, 23(2), 365–385.

McCubbins, M., and B. Rodriguez (2006): “When Does Deliberating Improve Decision- mak-
ing?,” Journal of Contemporary Legal Studies, 15, 9–50.

Meirowitz, A. (2006): “Designing Institutions to Aggregate Preferences and Information,” Quar-
terly Journal of Political Science, 1, 373–392.

Menzel, K. (2011): “Robust Decisions for Incomplete Structural Models of Social Interactions,”
Working Paper, NYU.

Myerson, R. B. (1986): “Multistage Games with Communication,” Econometrica, 54(2), 323–358.

Poole, K., and H. Rosenthal (1985): “A Spatial Model for Legislative Roll Call Analysis,”
American Journal of Political Science, 29, 357–384.

(1991): “Patterns of Congressional Voting,” American Journal of Political Science, 35,
228–278.

Ryan, S. (2012): “The Costs of Environmental Regulation in a Concentrated Industry,” Economet-
rica, 80, 1019–1061.

Songer, D. R. (2008): “United States Courts of Appeals Database,” The Judicial Research Ini-
tiative (JuRI).

Stasser, G., and W. Titus (1985): “Pooling of unshared information in group decision making:
Biased information sampling during discussion.,” Journal of personality and social psychology,
48(6), 1467–1478.

Sweeting, A. (2009): “The Strategic Timing of Radio Commercials: an Empirical Analysis using
Multiple Equilibria,” RAND Journal of Economics, 40, 710–742.

Wan, Y., and H. Xu (2010): “Semiparametric estimation of binary decision games of incomplete
information with correlated private signals,” Working paper, Penn State.

Xu, H. (2014): “Estimation of discrete games with correlated types,” The Econometrics Journal,
17(3), 241–270.

Zuk, G., D. J. Barrow, and G. S. Gryski (2009): “Multi-User Database on the Attributes of
United States Appeals Court Judges, 1801-2000,” Inter-university Consortium for Political and
Social Research (ICPSR) [distributor].

44


	Introduction
	US Appellate Courts: Data and Background 
	Institutional Features and Preliminary Data Analysis 

	A Model of Voting in US Appellate Court Committees 
	From Model to Data 
	Partial identification of model parameters 
	Estimation
	Handling Covariates – Two-step Estimation

	Results 
	First-Stage Estimates
	Second-Stage Estimates: Preferences and Information 
	Equilibrium Outcomes with Deliberation 
	The Impact of Deliberation 
	Remarks and Robustness Checks 

	Conclusion 

