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A Appendix: Additional Figures and Tables

Table A.1: Summary statistics of data variables

Variable: Mean Std.Dev.

Case characteristics:

FedLaw =1 if case prosecuted under federal law 0.8169 0.3868

Aggravated =1 if crime is aggravated assault/murder 0.1220 0.3273

White Collar =1 if white collar crime 0.2038 0.4029

Theft =1 if crime is theft 0.1414 0.3485

Narcotics =1 if drug-related crime 0.2062 0.4047

Rep. Majority =1 if ≥ 2 republicans on panel 0.4452 0.4971

Female =1 if ≥ 1 female judge on panel 0.0831 0.2760

Harv-Yale Majority =1 if ≥ 2 Harvard/Yale grads on panel 0.1812 0.3853

Jury instruction =1 if main legal issue is jury instruction 0.1970 0.3978

Sentencing =1 if main legal issue is sentencing 0.1624 0.3689

Admissibility =1 if main legal issue is admissibility of evidence 0.3473 0.4762

Sufficiency =1 if main legal issue is sufficiency of evidence 0.2547 0.4358

# cases: 3239

Judge characteristics:

Republican =1 if judge is republican 0.5392 0.4989

Yearsexp Years of experience 7.3174 7.1620

Judexp Years of prior judicial experience 7.1893 7.8409

Polexp Years of prior political experience 1.9197 3.7628

#judges: 523

Vote Outcomes:

Unanimous to Overturn 21.0%

Divided to Overturn 2.8%

Divided to Uphold 4.0%

Unanimous to Uphold 72.2%
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Table A.2: Average Case and Judge Characteristics Across Vote Outcomes

Unanimous 1 Unanimous 0 Divided 1 Divided 0

Case Specific:

FedLaw 0.787 0.832 0.750 0.754

Aggravated 0.124 0.114 0.185 0.208

White Collar 0.179 0.209 0.207 0.238

Theft 0.149 0.137 0.163 0.169

Narcotics 0.166 0.222 0.174 0.154

Rep. Majority 0.446 0.451 0.391 0.377

Female in Panel 0.081 0.082 0.120 0.092

Harvard-Yale Majority 0.168 0.186 0.185 0.169

Jury Instruction 0.168 0.206 0.098 0.254

Sentencing 0.138 0.173 0.087 0.146

Admissibility 0.281 0.362 0.326 0.446

Sufficiency 0.178 0.281 0.196 0.231

Caseload 42.835 44.160 38.357 39.945

Judge Specific:

Republican 0.456 0.472 0.399 0.444

Year of Experience 9.535 9.664 10.210 10.118

Prior Judicial Experience 5.518 5.493 4.902 4.862

Prior Political Experience 1.904 1.825 1.645 2.013

Rep×Assault 0.056 0.053 0.087 0.100

Rep×White Collar 0.085 0.095 0.080 0.115

Rep×Theft 0.058 0.060 0.062 0.044

Rep×Narcotics 0.082 0.118 0.065 0.074

Nonwhite Dummy 0.048 0.040 0.029 0.064

Female Dummy 0.027 0.029 0.040 0.033

Number of Cases: 680 2337 92 130

Note: Unanimous 1: Unanimous Overturn; Unanimous 0: Unanimous Uphold; Divided

1; Divided Overturn; Divided 0; Divided Uphold.
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Table A.3: Benchmark specification

Estimated Vote Probabilities pv(~v|X):

p̂v(111) =0.224 p̂v(000) =0.676
p̂v(101) =0.020 p̂v(010) =0.015
p̂v(110) =0.012 p̂v(001) =0.019
p̂v(100) =0.025 p̂v(011) =0.010

Case characteristics:
FedLaw =1 Jury instruction =0
Narcotics =0 Sentencing =0
Aggravated =0 Admissibility =1
White Collar =1 Sufficiency =0
Theft =0 Rep. Majority =1
Female Judge =0 Harvard-Yale Majority =0

Judge characteristics: Judge 1 Judge 2 Judge 3
Republican 1 1 0
Yearsexp 7.19 0 7.19
Judexp 1.92 0 1.92
Polexp 0 6.85 6.85

Table A.4: Average Judge Characteristics for Dissenting Judges and Non-dissenting
Judges

Dissenting Non-dissenting Difference Standard Error

Republican 0.419 0.466 -0.047 0.034
Years of Experience 10.554 9.650 0.904 0.515

Prior Judicial Experience 5.027 5.465 -0.439 0.496
Prior Political Experience 1.500 1.852 -0.352 0.234

Rep*Assault 0.086 0.056 0.030 0.019
Rep*White Collar 0.104 0.093 0.010 0.021

Rep*Theft 0.059 0.059 -0.000 0.016
Rep*Narcotics 0.063 0.108 -0.045 0.017

Nonwhite Dummy 0.072 0.042 0.030 0.018
Female Dummy 0.041 0.029 0.011 0.013
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Figure A.1: Minimum and maximum probability of error in equilibria consistent with the

data (top) and all equilibria (bottom), for pairs of preference heterogeneity and competence

(H, q) consistent with points in the confidence set for ρ = 0.5. (Average of extrema across

points (~π, q) such that H(~π) = H).
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Figure A.2: Minimum and maximum equilibrium probability of error in equilibria consistent

with the data (top) and all equilibria (bottom), for pairs of preference heterogeneity and

competence (H, q) consistent with points in the EIS for ρ = 0.2. (Average of extrema across

points (~π, q) such that H(~π) = H).
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Figure A.3: For each point in the EIS, red dots plot the correspondence between the

min/max probability of error in equilibria without deliberation (x-axis) and the min/max

probability of error in all equilibria with deliberation (y-axis). Blue dots plot the correspon-

dence between min/max probability of error in equilibria without deliberation (x-axis) and

the min/max probability of error in equilibria with deliberation consistent with the data.
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Figure A.4: Probability of mistakes with and without deliberation for values of preference

heterogeneity H consistent with points (~π, θ) in the confidence set for ρ = 0.5 (left), and

ρ = 0.2 (right). Min. and max. eq. probability of error in (i) all equilibria with deliberation

(solid black), (ii) in equilibria with deliberation consistent with the data (dotted), and (iii)

in responsive equilibria without deliberation (solid red, with marker).
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Figure A.6: Probability of mistakes with and without deliberation for values of preference
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eq. probability of error in (i) all equilibria with deliberation (solid black), (ii) in equilibria

with deliberation consistent with the data (dotted), and (iii) in responsive equilibria without

deliberation (solid red, with marker).
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Figure A.7: Probability of mistakes with and without deliberation for values of preference

heterogeneity H consistent with points (~π, θ) in the EIS for ρ = 0.5 (left), based on (left)

an artificial dataset in which all unanimous cases have been discarded and (right) based on

actual data
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B Confidence Set

Here, we discuss statistical inference in partially identified models based on confidence sets

which cover either the true parameter, or the identified set with a pre-specified probability.

Following the literature, we construct a confidence set by inverting a test for the null

hypothesis H0 : (θ, ~π) ∈ A0 for each fixed (θ, ~π). To be specific, we collect all the (θ, ~π) such

that there is one µ ∈ M(θ, ~π) at which the H0 is not rejected. The collection of all those

(θ, ~π) forms a confidence set.1

Standard application of the central limit theorem gives us
√
n(~̂pv − ~pv)→d N(0,Σ), where

Σ is the variance-covariance matrix of the vector of vote probabilities ~pv. Then the law of

large numbers implies Σ̂n →p Σ. Accordingly, we define the following test statistic:

Tn(θ, ~π) = nQn(θ, ~π; Σ̂−1
n ). (B.1)

By definition, Tn(θ, ~π) ≤ nQn(θ, ~π, µ; Σ̂−1
n ) for any (θ, ~π, µ) ∈ B0. Using standard argu-

ments, we can show that for any (θ, ~π, µ) ∈ B0, nQn(θ, ~π, µ, Σ̂−1
n ) →d χ

2(7). Thus, a test

of significance level α ∈ (0, 1) can use the 1 − α quantile of χ2(7) as critical value. The

confidence set for (θ, ~π) is defined as

CSn(1− α) = {(θ, ~π) ∈ Θ× [0, 1]3 : Tn(θ, ~π) ≤ χ2
7,α}, (B.2)

where χ2
7,α is the 1− α quantile of χ2(7).

Theorem 2. Suppose Σ is invertible. Then

(a) lim infn→∞ inf(θ,~π)∈A0
Pr((θ, ~π) ∈ CSn(1− α)) ≥ 1− α; and

(b) lim infn→∞ Pr(A0 ⊆ CSn(1− α)) ≥ 1− α.

Proof. See Appendix C.

Remark B.1. Part (a) shows that CSn covers the true value of (θ, ~π) with asymptotic

probability no smaller than 1 − α. Interestingly, it is also a confidence set that covers A0

with asymptotic probability no smaller than 1−α, as shown in part (b).2 The intuition for

this phenomenon is that the random components of Tn(θ, ~π, µ) – which are just the empirical

frequencies of the vote probabilities ~̂p – do not depend on the model parameters (θ, π).

1This inferential method differs from the approach of Pakes, Porter, Ho, and Ishii (2015), which is based
on moment inequalities derived from agents’ best-response correspondences. While this approach has proved
useful in several applications with games of complete information, in the context of our incomplete informa-
tion environment we have not been able to derive moment inequalities based on best-response behavior.

2 Imbens and Manski (2004) initiated a sizable literature regarding these two types of confidence sets.
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In contrast, in typical moment inequality models, the random sample moment functions

depend explicitly on the model parameters.

Remark B.2. Because the confidence set CSn above is based on the asymptotic critical

value for nQn(θ, ~π, µ; Σ̂−1
n ), which is weakly bigger than Tn(θ, ~π), it may over-cover asymp-

totically; that is, it may be larger than necessary. Tighter and nonconservative confidence

sets can be constructed by directly approximating the distribution of Tn(θ, ~π) using the

methods developed in Bugni, Canay, and Shi (2013) and Kitamura and Stoye (2011).3 The

disadvantage of doing this is two-fold: (i) the critical value will need to be simulated and

will depend on θ and ~π; and (ii) a tuning parameter will need to be introduced to reflect the

slackness of the inequality constraints. In addition, in our data, we find that the confidence

set CSn is not much larger than the EIS Ân, suggesting that not much can be gained by

adopting the more complicated methods.

The confidence set can be computed in the following steps:

(1) for each (θ, ~π), compute Tn(θ, ~π) = nQn(θ, ~π; Σ̂−1
n ) via the quadratic program:

Qn(θ, ~π;Wn) = min
~µ∈[0,1]64

(~pv − Pt(θ)~µ)
′
W (~pv − Pt(θ)~µ)

′

s.t.(3.2), (3.3), (3.4), and
k+8∑
j=k+1

~µj = 1, k = 0, ..., 7. (B.3)

(2) repeat step (1) for many grid points of (θ, ~π) ∈ Θ× [0, 1]3, and

(3) collect the points in step (2) that satisfy Tn(θ, ~π) ≤ χ2
7,α, and the points form CSn(1−α).

For all the results in this paper, we use a value of α = 0.05.

3See Wolak (1989) for the case where the inequality constraints are linear in the structural parameters θ.
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C Proofs

Proof of Theorem 1. Because p(~t, θ) = p(~t|w = 1; θ)ρ + p(~t|w = 0; θ)(1 − ρ) is continu-

ously differentiable in θ, Theorem 2.1 of Shi and Shum (2015) applies and shows that

dH(B̂n,B0)→p 0, where

B̂n = {(θ, ~π, ~µ) ∈ B : Qn(θ, ~π, µ;Wn) = min
(θ,~π)∈Θ×[0,1]3

Qn(θ, ~π,Wn)}, (C.1)

where Qn(θ, ~π, µ;Wn) is defined like Q(θ, ~π, µ;W ) but with ~p and W replaced by ~̂p and

Wn. Because Ân and A0 are the projections of B̂n and B0 onto their first dθ + 3 dimension,

respectively, we have dH(Ân,A0)→p 0.

Proof of Theorem 2. (a) For any sequence {(θn, ~πn) ∈ A0}∞n=1, there exists {µn ∈M(θn, ~πn)}∞n=1

such that ~pv = Pt(θn)~µn. Thus, nQn(θn, ~πn, µn; Σ̂−1
n ) = n(~̂pv − ~pv)

′
Σ̂−1
n (~̂pv − ~pv)→d X 2(7).

Thus

Pr((θn, ~πn) ∈ CSn(1− α)) = Pr(Tn(θn, ~πn) ≤ χ2
7,α)

≥Pr(nQn(θn, ~πn, µn; Σ̂−1
n ) ≤ χ2

7,α)

→Pr(χ2(7) ≤ χ2
7,α) = 1− α. (C.2)

This implies part (a).

(b) Part (b) holds because

Pr(A0 ⊆ CSn(1− α)) = Pr( sup
(θ,~π)∈A0

Tn(θ, ~π) ≤ χ2
7,α)

≥ Pr( sup
(θ,~π,µ)∈B0

nQn(θ, ~π, µ; Σ̂−1
n ) ≤ χ2

7,α)

= Pr(n(~̂pv − ~pv)
′
Σ̂−1
n (~̂pv − ~pv) ≤ χ2

7,α)

→ Pr(χ2(7) ≤ χ2
7,α) = 1− α, (C.3)

where the second equality holds because for all (θ, ~π, µ) ∈ B0, ~pv = Pt(θ)~µ.
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D Responsive Equilibria without Deliberation

In Section 5.4 in the main paper we compared the equilibrium probability of error in voting

with deliberation with the corresponding equilibrium probability of error that would have

occurred in the absence of deliberation for the same court and case characteristics. Specif-

ically, for each point (θ, ~π) in the confidence set we compare the maximum and minimum

error probabilities across all equilibria, ε(θ, ~π) and ε(θ, ~π), and across equilibria consistent

with the data, ε∗(θ, ~π, pv) and ε∗(θ, ~π, pv), with the corresponding maximum and minimum

error probabilities in responsive Bayesian Nash equilibria (BNE) of the voting game without

communication, εND(θ, ~π) and εND(θ, ~π). To carry out this comparison, we solve for all

responsive BNE of the non-deliberation game, for all parameter points in the confidence

set.

In the game without deliberation, the strategy of player i is a mapping σi : {0, 1} → [0, 1],

where σi(ti) denotes the probability of voting to overturn given signal ti. It is easy to show

that σi(ti) > 0 (< 1) only if Pr(ω = 1|ti, P ivi) ≥ πi (≤ πi), or

Pr(ti|ω = 1)

Pr(ti|ω = 0)

Pr(Pivi|ω = 1)

Pr(Pivi|ω = 0)
≥ πi

1− πi
1− ρ
ρ

(D.1)

Let αiω ≡ Pr(vi = 1|ω) denote the conditional probability that i votes to overturn in state

ω, and note that αi1 = qiσi(1)+(1−qi)σi(0), and αi0 = (1−qi)σi(1)+qiσi(0). Substituting

in (D.1), we have that σi(ti) > 0 only if (for j, k 6= i)

Pr(ti|ω = 1)

Pr(ti|ω = 0)

[
αj1(1− αk1) + αk1(1− αj1)

αj0(1− αk0) + αk0(1− αj0)

]
≥ πi

1− πi
1− ρ
ρ

(D.2)

Under certain conditions (when the court is sufficiently homogeneous) there is an equilibrium

in which all judges vote informatively ; i.e., σi(1) = 1, σi(0) = 0 for all i ∈ N . Note that

with informative voting αi1 = qi, and αi0 = (1 − qi). Then informative voting is a best

response for each i iff

ρ(1− qi)
ρ(1− qi) + (1− ρ)qi

≤ πi ≤
ρqi

ρqi + (1− ρ)(1− qi)

In general, other responsive equilibria are possible. With binary signals and a symmetric

environment (qi = q and πi = π ∀i ∈ N), the literature has focused on symmetric responsive

BNE. Here the restriction has no bite. Still, there is a relatively “small” class of equilibrium

candidates for any given parameter value. The exhaustive list is presented in Table D.5.
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Table D.5: Types of Possible Responsive Bayesian Nash Equlibria in the Non-deliberation
Game (σj in column σj(t) denotes mixing probability of action t).

Judge i Judge j Judge ` Non-Generic
Eq. Class σ1(1) σ1(0) σ2(1) σ2(0) σ3(1) σ3(0)

Pure Strategies:

(EQ1.a) 1 0 1 0 1 0
(EQ1.b) 1 0 1 0 1 1
(EQ1.c) 1 0 1 0 0 0

All judges mix:

(EQ2) σ1 0 σ2 0 σ3 0
(EQ3) 1 σ1 1 σ2 1 σ3

(EQ4) σ1 0 σ2 0 1 σ3

(EQ5) σ1 0 1 σ2 1 σ3

Two judges mix:

(EQ6.a) σ1 0 σ2 0 1 1
(EQ6.b) σ1 0 σ2 0 0 0 X
(EQ6.c) σ1 0 σ2 0 1 0
(EQ7.a) 1 σ1 1 σ2 1 1 X
(EQ7.b) 1 σ1 1 σ2 0 0
(EQ7.c) 1 σ1 1 σ2 1 0
(EQ8.a) σ1 0 1 σ2 1 1 X
(EQ8.b) σ1 0 1 σ2 0 0 X
(EQ8.c) σ1 0 1 σ2 1 0
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Characterizing responsive equilibria in the non-deliberation game is a laborious but simple

task. We illustrate the main logic in case (8.c) in Table D.5; i.e., σi(1) ∈ (0, 1), σj(0) ∈ (0, 1),

σi(0) = 0, σj(1) = 1, and σk(1) = 1, σk(0) = 0. (The analysis of the other cases is similar;

full details are available upon request). Note that here α10 = (1− q1)σ1(1), α11 = q1σ1(1),

α20 = (1− q2) + q2σ2(0), α21 = q2 + (1− q2)σ2(0), α30 = 0, and α31 = 1.

In equilibrium, i = 1 has to be indifferent between upholding and overturning after t1 = 1.

Then if it exists, σ∗2(0) is given by the value of σ2(0) ∈ [0, 1] that solves (D.2) with equality

for i = 1 and si = 1, or

σ∗2(0) =
[q1(1− π1)ρ− (1− q1)π1(1− ρ)][(1− q2)q3 + q2(1− q3)]

(2q3 − 1)[q1(1− π1)ρ(1− q2) + (1− q1)π1(1− ρ)q2]
,

which in turn implies α∗20 = (1 − q2) + q2σ
∗
2(0) and α∗21 = q2 + (1 − q2)σ∗2(0). Similarly, in

equilibrium, i = 2 has to be indifferent between upholding and overturning after t2 = 0.

Then when it exists, σ∗1(1) is given by the value of σ1(1) ∈ [0, 1] that solves (D.2) with

equality for i = 2 and t2 = 0, or

σ∗1(1) =
(1− q2)q3(1− π2)ρ− q2(1− q3)π2(1− ρ)

(2q3 − 1)[(1− q2)q1(1− π2)ρ+ q2(1− q1)π2(1− ρ)]
,

which implies α∗10 = (1 − q1)σ∗1(1) and α∗11 = q1σ
∗
1(1). Finally, in equilibrium i = 3 has to

have incentives to vote informatively. This means that

1− q3

q3
≤︸ ︷︷ ︸

t3=1

α∗21(1− α∗11) + α∗11(1− α∗21)

α∗20(1− α∗10) + α∗10(1− α∗20)
· 1− π3

π3
· ρ

1− ρ
≤ q3

1− q3︸ ︷︷ ︸
t3=0

.

We can then evaluate numerically, for each point (ρ, ~q, ~π) in the confidence set, if the

conditions for this to be an equilibrium are satisfied. As before, the error associated with

this equilibrium σ is εND(σ, θ) = (1 − ρ) Pr(v = 1|ω = 0;σ, θ) + ρPr(v = 0|ω = 1;σ, θ),

where given majority rule and independent mixing, for k, ` 6= j

Pr(v = 1|ω, σ, θ) =
3∑
j=1

αkωα`ω(1− αjω) + α1ωα2ωα3ω.
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E Efficient Deliberation

Here we compare social welfare in the equilibria that maximize the sum of judges’ payoffs

with and without deliberation, for equilibria consistent with the data and all equilibria.

For a given point (θ, ~π), and given a communication equilibrium µ, judge i’s expected utility

is given by the expected cost of type I and type II errors,

Ui(µ; (θ, ~π)) = − [ρεII(µ; (θ, ~π))(1− πi) + (1− ρ)εI(µ; (θ, ~π))πi] .

Therefore, the equilibrium that maximizes judges’ total welfare, µ∗(θ, ~π), is the µ ∈M(θ, ~π)

that maximizes U(θ, ~π, µ) ≡
∑

i Ui(µ; (θ, ~π)). A similar definition applies for non-deliberation

equilibria, giving σ∗(θ, ~π). For equilibria consistent with the data, the equilibrium that max-

imizes judges’ total welfare, µ̃(θ, ~π), is

µ̃(θ, ~π) = arg max
µ∈M(θ,~π)

U(θ, ~π, µ) s.t. pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)

 .

The left panel of Figure E.8 plots the maximum aggregate welfare for points in the EIS for

ρ = 0.5 across all equilibria of the game with deliberation, UD(θ, ~π) ≡ U(µ∗(θ, ~π); (θ, ~π)),

and in the game without deliberation, UN (θ, ~π) ≡ U(σ∗(θ, ~π); (θ, ~π)). The difference is

plotted for various levels of competence q, as a function of the degree of preference hetero-

geneity in the court. The plot shows that the gain from efficient deliberation is fairly small,

and concentrated at higher levels of competence and preference heterogeneity. Consider

for example the highest competence level plotted in the figure (q = 0.9). For all levels of

heterogeneity H ≤ 0.8, the change in aggregate welfare attained by introducing efficient

deliberation is smaller than the change in welfare that would result from increasing com-

petence from q = 0.80 to q = 0.90, or from q = 0.70 to q = 0.80. Only at H = 0.9 is the

gain from efficient deliberation relatively high, exceeding the change in welfare that would

result from increasing competence from q = 0.80 to q = 0.90 at low levels of preference

heterogeneity.

The right panel provides a similar comparison restricting to the maximum aggregate welfare

across equilibria consistent with the data, ŨD(θ, ~π) ≡ U(µ̃(θ, ~π); (θ, ~π)). The results are

dramatically different. For relatively homogeneous courts (H ≤ 0.5), aggregate welfare at

the efficient equilibrium without deliberation for a moderate competence level, q = 0.80,

actually exceeds aggregate welfare at the most efficient equilibrium with deliberation that is

consistent with the data at q = 0.90. As the plot shows, the change in welfare is more severe
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at higher levels of competence. In fact, at q = 0.9, the loss of welfare due to deliberation is

larger than the change in aggregate welfare that would result from increasing competence

from q = 0.70 to q = 0.90 in equilibria of voting with deliberation consistent with the data.

A similar analysis can be done for ρ = 0.2. The previous results show, however, that our

previous conclusions do not change when we consider efficient deliberation.
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F Refining the Identified Set: Endogenous Quality of Infor-

mation.

In Section 5.5 of the main paper we assumed that CASELOAD affects deliberation but is

independent of the ability q and preference parameters ~π. This allowed us to refine the

estimated identified set by “intersecting” the estimated identified sets for different levels

of CASELOAD. CASELOAD could, however, potentially affect judges’ signal quality q. If

this were the case, our previous procedure would potentially be too strict and eliminate too

many values of ~π. To reflect this fact, here we consider the possibility that judges’ signal

quality may depend on CASELOAD, and modify our refinement taking this into consider-

ation. As we will show, provided that preferences ~π do not depend on CASELOAD, the

revised version of our procedure still provides a significant refinement of the identified set

(IS).

We consider two different exercises:

Exercise 1. First, as long as CASELOAD does not affect the preference parameters ~π,

then it still makes sense to take intersections over the identified sets of ~π across different

values of CASELOAD (i.e., ignore the q parameter). We plot the results of this exercise in

Figure F.9.

As the figure shows, the intersection of the identified sets attains a significant reduction

in the size of the identified set for (π1, π2, π3), from 4001 to 1403 points. The refinement

allows us to rule out the most extreme preferences in favor of overturning, increasing the

minimum value of the bias of each judge (the smallest value of the posterior probability

that the lower court’s ruling is erroneous for which judge i would prefer to overturn) from

a value of 0.20 for all judges i = 1, 2, 3 to 0.40 for judge 1, 0.35 for judge 2, and 0.50 for

judge 3. This also implies that we can rule out the most polarized courts in the original

identified set. In fact, the highest level of polarization consistent with the data goes from

1.06 (e.g. ~π = (0.92, 0.50, 0.08)) in the original EIS to 0.67 (e.g., ~π = (0.83, 0.50, 0.17)) in

the refined set.

Strikingly, when we plot the projection on ~π of the identified sets (q-slices of which are

depicted in Figure A.5) obtained in Section 5.5, where we restrict q to also be unaffected

by CASELOAD, the plots in Figure F.9 are exactly the ones that we get. This implies that

there are no difference in the identified sets of preference parameters regardless of whether

we allow for CASELOAD to affect q. The reason for this is that the identified set for ~π is
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Figure F.9: Level 0 depicts the original EIS of Preference Parameters ~π. Level 1 depicts the EIS
of preference parameters based on median caseload value, level 2 the intersection of median and 25
and 75 quantiles, and level 3 the EIS of ~π based on seven quantiles (0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875) of the CASELOAD variable in the data.

20



determined at high values of q, and these high values of q are consistent with the conditional

vote profile distribution for all values of CASELOAD.

Exercise 2. For values of q which belong to the identified sets for different CASELOAD

levels, our previous procedure remains valid. That is, even when q depends on CASELOAD:

the fact that q ∈ IS(C ′) and q ∈ IS(C ′′) implies that we cannot rule out the possibility

that two judges having caseload values of C ′ and C ′′ nevertheless have the same value of

q. In this case, then, we can use intersection to refine the set of ~π consistent with the

data and the given competence level q. Specifically, define the “q-slice” of the identified

set for a value of caseload C, as IS(C; q) = {~π ∈ [0, 1]3 : (~π, q) ∈ IS(C)}; i.e, the set

of preference parameters that are consistent with the data for the given level of quality q.

Under the assumption that ~π does not depend on CASELOAD, if a value of q is in the

identified sets for two different values of CASELOAD, the q-slice of the refined set, ÎS(q),

only contains values ~π that are in both sets; i.e, if IS(C ′; q) 6= ∅ and IS(C ′′; q) 6= ∅, then

~π ∈ ÎS(q)⇒ ~π ∈ IS(C ′; q)
⋂
IS(C ′′; q).
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Figure F.10: q-slices of the refined set, ÎS(q), for q = 0.60 and q = 0.90, with successive refinements
as we move from the first to the second and third columns. First column: median; second column:
intersection of median and 25 and 75 quantiles; third column: identified set based on seven quantiles
(0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875) of the CASELOAD variable in the data.

Figure F.10 plots the resulting q-slices of the refined set, ÎS(q) for q = 0.60 and q = 0.90,

with successive refinements as we move from the first to the second and third columns:

IS based on median CASELOAD level, IS based on intersection of median and 25 and 75

quantiles of CASELOAD, and identified set based on seven quantiles (0.125, 0.25, 0.375,
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0.5, 0.625, 0.75, 0.875) of the CASELOAD variable in the data.4 This allows us to compute

a refined set of polarization consistent with the data for each level of q. The result is

illustrated in Figure F.11.

0.00	
  

0.10	
  

0.20	
  

0.30	
  

0.40	
  

0.50	
  

0.60	
  

0.70	
  

0.80	
  

0.90	
  

1.00	
  

0.52	
   0.54	
   0.56	
   0.58	
   0.60	
   0.62	
   0.64	
   0.66	
   0.68	
   0.70	
   0.72	
   0.74	
   0.76	
   0.78	
   0.80	
   0.82	
   0.84	
   0.86	
   0.88	
   0.90	
   0.92	
   0.94	
   0.96	
   0.98	
  

Informa(on	
  Precision	
  (q)	
  

Min	
  Polariza6on	
  (median	
  IS)	
  

Max	
  Polariza6on	
  (median	
  IS)	
  

Min	
  Polariza6on	
  (Refinement)	
  

Max	
  Polariza6on	
  (Refinement)	
  

Figure F.11: Min and Max Polarization across points in the median IS and Refined IS

A natural question to ask is whether the effect of deliberation we estimate changes once we

use the refined set. The answer is no: qualitatively, the comparison of equilibrium errors

with and without deliberation follow similar patterns to what we described in our main

analysis (Section 5.4). This is illustrated in Figure F.12 below for two levels of competence

(q = 0.80, 0.90) and polarization (H = 0.10, 0.30)

4In practical terms, the results from this second exercise turn out to be very similar to the (unreported)
q = 0.60 and q = 0.90 counterparts of the last three plots of Figure A.5. There is one subtle difference.
Previously we assumed exogeneity of q, and computed identified set based on the average vote profile
distribution (over all values of caseloads). The average made sense because q does not vary with caseloads.
Now that we allow q to depend on caseload, only the conditional vote profile distribution given CASELOAD
make sense and only those are used.
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Figure F.12: Eq. probability of mistakes with and without deliberation, for points in the refined
EIS, at values of preference heterogeneity H and quality of information q consistent with the refined
EIS. ρ = 0.5. Min. and max. eq. probability of error (i) in equilibria with deliberation consistent
with the data (black), and (iii) in responsive equilibria without deliberation (red and green).
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G Common Values Revisited: Results

To address concerns regarding the applicability of our assumptions to some cases in the

sample, in particular “admissibility” cases, we re did our estimation and analysis focusing

on cases where the common value assumption is most natural according to the discussion

in Section 5.5. In this section we report the results of this exercise.

We re-estimate our model (i) for a sample composed of cases other than admissibility cases,

and (ii) for a sample of cases including only sufficiency and sentencing (as well as cases

coded as other). The rationale for considering the restricted samples is to make sure that

the “questionable” cases do not contaminate the estimation of the conditional vote profile

distribution for the type of cases that we now focus on. In the new estimates, we compute

predicted voting probabilities pv(~v|X) for sufficiency cases.

Table G.6 below presents the results. Column (1) presents the predicted voting probabilities

for sufficiency cases using the full sample. Columns (2) and (3) show the corresponding

estimates for our two robustness checks. For ease of comparison, the predicted voting

probabilities for our benchmark analysis is also reported in Column (4). The comparison

of columns (1) and (4) show that predicted vote probabilities for sufficiency cases differ

somewhat from those for admissibility cases, although not radically. Moreover, comparing

column (1) with columns (2) and (3) shows that excluding questionable cases similarly does

not have a large affect on predicted vote probabilities.

Table G.6: Estimated Vote Probabilities pv(~v|X) using different subsamples

(1) (2) (3) (4)
Subsamples Full Only Sufficiency All Except Full
of Cases: Sample & Sentencing Admissibility Sample
p̂v(111) 0.194 0.189 0.169 0.223
p̂v(101) 0.010 0.016 0.014 0.020
p̂v(110) 0.007 0.007 0.008 0.013
p̂v(100) 0.014 0.027 0.023 0.025
p̂v(000) 0.746 0.707 0.743 0.677
p̂v(010) 0.008 0.016 0.012 0.015
p̂v(001) 0.011 0.021 0.015 0.018
p̂v(011) 0.013 0.017 0.016 0.010

Columns (1)-(3): Probabilities evaluated at case characteristics
X = (FedLaw, White Collar, Sufficiency, Rep. Majority)

Column (4): Probabilities evaluated at case characteristics

X = (FedLaw, White Collar, Admissibility, Rep. Majority)

The moderate change in the voting probabilities strongly suggests in turn that the changes
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in our estimates of the effect of deliberation will also be moderate, but does not imply this

result. To confirm this, we recompute the max and min error probabilities in equilibria with

and without deliberation for the new estimated voting probabilities. We choose the second

column of Table G.6 to redo the error probability calculations with, as this column comes

from a configuration that ex ante differs from the benchmark configuration the most. The

results, which we illustrate in Figure G, indicate that our main conclusions are qualitatively

unchanged.
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Figure G.13: Probability of mistakes with and without deliberation for values of preference het-
erogeneity H and quality of information q consistent with points (~π, θ) in the EIS for the sufficiency
cases based on the most restricted sample. ρ = 0.5. Min. and max. eq. probability of error (i)
in equilibria with deliberation consistent with the data (black), and (iii) in responsive equilibria
without deliberation (red and green).
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